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AmTRACT 

A new model of a controlled neuron oscillatJOr, 
proposed earlier {Kryukov et aI, 1986} for the 
interpretation of the neural activity in various 
parts of the central nervous system, may have 
important applications in engineering and in the 
theory of brain functions. The oscillator has a 
good stability of the oscillation period, its 
frequency is regulated linearly in a wide range 
and it can exhibit arbitrarily long oscillation 
periods without changing the time constants of 
its elements. The latter is achieved by using 
the critical slowdown in the dynamics arising in 
a network of nonformal excitatory neurons 
{Kovalenko et aI, 1984, Kryukov, 1984}. By 
changing the parameters of the oscillator one 
can obtain various functional modes which are 
necessary to develop a model of higher brain 
function. 

mE CECILLATOR 

Our oscillator comprises several hundreds of modelled 
excitatory neurons (located at the 6i tes of a plane lattice) 
and one inhibitory neuron. The latter receives output 
stgnals from all the excitatory neurons and its own output 
is transmitted via feedback to every excitatory neuron (Fig. 
1). Each excit~tory neuron is connected bilaterally with its 
four nearest neighbours. 

Each neuron has a threshold r(t) decaying exponentially to a 
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e i value roo or roo (for an excitatory or inhibitory neuron). A 

Gaussian noise with zero mean and standard deviation a is 
added to a threshold. A membrane potential of a neuron is 
the sum of input impulses decaying exponentially when there 
are no inwt. If the membrane potential exceeds the 
threshold, the neuron fires and sends impulses to the 
neighbouring neurons. An imWlse from excitatory neuron to 
excitatory one increases the membrane potential of the 
latter by aee, from the excitatory to the inhibitory - by 

aei, and from the inhibitory to the excitatory - decreases 

the membrane potential by aie' We consider a discrete time 

model J the time step being equal to the absolute refractory 
period. 
We associate a variable xi(t) with each excitatory neuron. 

If the i-th neuron fires at step t, we take x.(t)=1; if it 
1 

does not, then Xi (t)=O. The mean E(t)=l/N ~i (t) will be 

referred to as the network acti vi ty, where N is the number 
of excitatory neurons. 
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Figure 1. A - neuron, B - scheme of interconnections 

Let us consider a situation when inhibitory feedback is cut 
off. Then such a model exhibits a critical slowdown of the 
dynamics {Kovalenko et al, 1984, Kryukov, 1984}. Namely, if 
the interconnections and parameters of neurons are chosen 
appropriately , initial pattern of activated neurons has an 
unusually long lifetime as compared with the time of membrane 
potential decay. In this mode R(t) is slowly increasing and 
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causes the inhibitory neuron to fire. 
Now J if we tum on the negative feedback, outPUt impulse 
from inhibitory neuron sharply decreases membrane potentials 
of excitatory neurons. As a a consequence, K( t) falls down 
and process starts from the beginning. 

We studied this oscillator by means of simulation model. 
There are 400 excitatory neurons (20*20 lattice) and one 
inhibitory neuron in our model. 

THE MAIN PKFml'IHS OF THE <EClILATOO 

a. When the thresholds of excitatory neurons are high 
enough, the inhibitory neuron does not fire and there are no 
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Figure 2. Oscillatory mode. A - network activity, 
B - neuron spike trains 

~~!!l~~~~lues of r! the network activity R(t) changes 

periodically and excitatory neurons generate bursts of 
spikes (Fig. 2). The inhibitory neuron generates regular 
periodical spike trains. 
c. If the parameters are chosen appropriately, the mean 
oscillation period is much greater than the mean interspike 
interval of a network neuron. The frequency of oscillations 

is regulated by r! (Fig. 3A) or, which is the same, by the 
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intensity of the inp.lt flow. The miniIwm period is 
determined by the decay rate of the inhibitory input, the 
maximum - by the lifetime of the metastable state. 
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F~ 3. A - oscillation frequency lIT vs. threshold r!, 

B - coefficient of variation of the period K vs. period 

d. The coefficient of variation of the period is of the 
order of several percent, rut it increases at low 
frequencies (F~. 3B). The stability of oscillations can be 
increased by introducing some inhomogeneity in the network, 
for example, when a part of excitatory neurons will receive 
no inhibitory signals. 

OOCILLA'lOO UNDER ntPULSE STIMOLATI~ 

In this section we consider first the neural network without 
the inhibitory neuron. But we imitate a periodic input to 
the network by slowly varying the thresholds ret) of the 
excitatory neurons. Namely, we add to r( t) a value 
Ar-A· sin(Wt) and fire a part of the network at some phase of 
the sine wave. Then we look at the time needed for the 
network to restore its background activity. There are 
specific values of a phase for which this time is rather b~ 
(Fig. 4A). Now consider the full ocsillator with an 
oscillation period T (in this section T=35±2. 5 time steps) . 
We stimulate the oscillator by periodical (with the period 
tat <35) sharp increase of membrane potential of each 

excitatory neuron by a value 8 st . As the stimulation 

proceeds, the oscillation period gradually decreases from 
T--35 to some value Tat' remaining then equal to Tat. The 
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value of Tat depends on the stimulation intensity Sst: as Sat 

gets greater, Tat tends to the st1lw.lation period tst' 
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Figure 4, A - threshold modulation, B - duration of the 
network responce vs. phase of threshold modulation, 

C - critical st1lw.lation intensity vs, stimulation period 

For every stimulation period tst there is characteristic 

value &0 of the st1lw.lation intensity Sst' such that with 

Sst>&o the value of Tst is equal to the stimulation period 

tat' The dependence between &0 and tat is close to a linear 

one (Fig, 4B). The usual relaxation oscillator also exibitB 
a linear dependence between &0 and tat' At the same time, we 

did not find in our oscillator any resonance phenomena 
essential to a linear oscillator, 

'1'HK NE'l1«)BK WITH INTKBNAL R>ISE 

In a further development of the neural oscillator we tried 
to ooild a model that will be more adequate to the 
biological counterpart. To this end, we changed the 
structure of interconnections and tried to define more 
correctly the noise component of the i.np.lt signal coming to 
an excitatory neuron, In the model described above we 
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imitated the sum of inputs from distant neurons by 
independent Gaussian noise. Here we used real noise produced 
by the network. 

In order to simulate this internal noise, we randomly choose 
16 distant neighbours for every exi tatory neuron. Then we 
assume that the network elements are adjusted to work in a 
certain noise environment. This means that a ' mean' internal 
noise would provide conditions for the neuron to be the most 
sensitive for the information coming from its nearest 
nelghbors . 
So. for every neuron i we calculate the sum k. =&c . (t), where 

1 J 
summation is over all distant nelghbors of this neuron, and 
compare it with the mean internal noise k=1/N Lk.. The 

1 

internal noise for the neuron i now is ni=C(ki-k), where C>O 

is a constant. 
We choose model parameters in such a way that the noise 
component is of the order of several percent of the membrane 
potential. Nevertheless, the network exhibits in this case a 
dramatic increase of the lifetime of initial pattern of 
activated neurons, as compared with the network with 
independent Gaussian noise. A range of parameters, for which 
this slowdown of the dynamics is observed, is also 
considerably irtCreased. Hence, longer perioos and better 
perioo stability could be obtained for our generator if we 
use internal noise. 

THE CHAIN OF THREE SUBMODULES: A MODEL OF COLUMN OSCILLATOR 

Now we consider a small System constituted of three 
oscillator submodules, A, B and C, connected consecutively 
so that submodule A can transmit excitation to submodule B, 
B to C, and C to A. The excitation can only be transmitted 
when the total activity of the submodule reaches its 
threshold level, i.e. when the corresponding inhibitory 
neuron fires. After the inhibitory neuron has fired, the 
activity of its submodule is set to be small enough for the 
submodule not to be active with large probability until the 
excitation from another submodule comes. Therefore, we 
expect A, B and C to work consecutively. In fact, in our 
simulation experiments we observed such behavior of the 
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Figure 5. Chain of three sutmodules. Period of 
oscillations (A) and its standard deviation (B) vs. 

noise amplitude 

closed chain of 3 basic submodules. The activity of the 
whole system is nearly periodic. Figure 5A displays the 
period T vs. the noise amplitude a. The scale of a is chosen 
so that 0.5 corresponds approximately to the resting 
potential. An interesting feature of the chain is that the 
standard deviation SeT) of the period (Fig. 5B) is small 
enough, even for the oscillator of relatively small size. 
The upper lines in Fig. 5 correspond to square 10*10 
network, middle - to 9*9, lower - to 8*8 one. One can see 
that the loss of 36 percent of elements only causes a 
reduction of the working range without the loss of 
stability. 

CXHUJSI~ 

Though we have not considered all the interesting modes of 
the oscillator, we believe that, owing to the phenomenon of 
metastability, the same oscillator exhibits different 
behaviour under slightly different threshold parameters and 
the same and/or different inPuts. 

Let us enumerate the most interesting functional 
possibilities of the oscillator, which can be easily 
obtained from our results. 

1.Pacemaker with the frequency regulated in a wide range and 
with a high period stability, as compared with the neuron 
(Fig. 313). 

2. Integrator (input=threshold, output=phase) with a wide 
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range of linear regulation (see Fig. 3A). 

3.Generator of damped oscillations (for discontinuous inPut). 

4. Delay device controlled by an external signal. 

5.Phase comparator (see Fig. 4A). 

We have already used these functions for the interPretation 
of electrical activity of several functionally different 
neural structures {Kryukov et aI, 1986}. The other functions 
will be used in a system model of attention {Kryukov, 1989} 
presented in this volume. All these considerations justify 
the name of our neural oscillator - a unified submodule for 
a ' resonance' neurocomputer. 
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