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The issues of scaling and generalization have emerged as key issues in 
current studies of supervised learning from examples in neural networks. 
Questions such as how many training patterns and training cycles are 
needed for a problem of a given size and difficulty, how to represent the 
inllUh and how to choose useful training exemplars, are of considerable 
theoretical and practical importance. Several intuitive rules of thumb 
have been obtained from empirical studies, but as yet there are few rig­
orous results. In this paper we summarize a study Qf generalization in 
the simplest possible case-perceptron networks learning linearly separa­
ble functions. The task chosen was the majority function (i.e. return 
a 1 if a majority of the input units are on), a predicate with a num­
ber of useful properties. We find that many aspects of.generalization 
in multilayer networks learning large, difficult tasks are reproduced in 
this simple domain, in which concrete numerical results and even some 
analytic understanding can be achieved. 

1 INTRODUCTION 
In recent years there has been a tremendous growth in the study of machines which 
learn. One class of learning systems which has been fairly popular is neural net­
works. Originally motivated by the study of the nervous system in biological organ­
isms and as an abstract model of computation, they have since been applied to a 
wide variety of real-world problems (for examples see [Sejnowski and Rosenberg, 87] 
and [Tesauro and Sejnowski, 88]). Although the results have been encouraging, 
there is actually little understanding of the extensibility of the formalism. In par­
ticular, little is known of the resources required when dealing with large problems 
(i.e. scaling), and the abilities of networks to respond to novel situations (i.e. gen­
eraliz ation). 

The objective of this paper is to gain some insight into the relationships between 
three fundament~l quantities under a variety of situations. In particular we are in­
terested in the relationships between the size of the network, the number of training 
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instances, and the generalization that the network performs, with an emphasis on 
the effects of the input representation and the particular patterns present in the 
training set. 

As a first step to a detailed understanding, we summarize a study of scaling and 
generalization in the simplest possible case. Using feed forward networks, the type of 
networks most common in the literature, we examine the majority function (return 
a 1 if a majority of the inputs are on), a boolean predicate with a number of useful 
features. By using a combination of computer simulations and analysis in the limited 
domain of the majority function, we obtain some concrete numerical results which 
provide insight into the process of generalization and which will hopefully lead to a 
better understanding of learning in neural networks in general.· 

2 THE MAJORITY FUNCTION 

The function we have chosen to study is the majority function, a simple predicate 
whose output is a 1 if and only if more than half of the input units are on. This 
function has a number of useful properties which facilitate a study of this type. 
The function has a natural appeal and can occur in several different contexts in the 
real-world. The problem is linearly separable (i.e. of predicate order 1 [Minsky and 
Papert, 69]). A version of the perceptron convergence theorem applies, so we are 
guaranteed that a network with one layer of weights can learn the function. Finally, 
when there are an odd number of input units, exactly half of the possible inputs 
results in an output of 1. This property tends to minimize any negative effects that 
may result from having too many positive or negative training examples. 

3 METHODOLOGY 

The class of networks used are feed forward networks [Rumelhart and McClelland, 86], 
a general category of networks that include perceptrons and the multi-layered net­
works most often used in current research. Since majority is a boolean function 
of predicate order 1, we use a network with no hidden units. The output function 
used was a sigmoid with a bias. The basic procedure consisted of three steps. First 
the network was initialized to some random starting weights. Next it was trained 
using back propagation on a set of training patterns. Finally, the performance of 
the network was tested on a set of random test patterns. This performance figure 
was used as the estimate of the network's generalization. Since there is a large 
amount of randomness in the procedure, most of our data are averages over several 
simulations. 

O. The material contained in this paper is a condensation of portions of the first author's 
M.S. thesis [Ahmad, 88]. 
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Figure 1: The average failure rate as a function of S. d = 25 

Notation. In the following discussion, we denote 5 to be the number of training 
patterns, d the number of input units, and c the number of cycles through the train­
ing set. Let f be the failure rate (the fraction of misclassified training instances), 
and rr be the set of training patterns. 

4 RANDOM TRAINING PATTERNS 
We first examine the failure rate as a function of 5 and d. Figure 1 shows the 
graph of the average failure rate as a function of S, for a fixed input size d = 25. 
Not surprisingly we find that the failure rate decreases fairly monotonically with 5. 
Our simulations show that in fact, for majority there is a well defined relationship 
between the failure rate and 5. Figure 2 shows this for a network with 25 input 
units. The figure indicates that In f is proportional to 5 implying that the failure 
rate decreases exponentially with 5, i.e., , = ae-fJs . 1/ {3 can be thought of as a 
characteristic training set size, corresponding to a failure rate of a/e. 

Obtaining the exact scaling relationship of l/P was somewhat tricky. Plotting {3 on 
a log-log plot against d showed it to be close to a straight line, indicating that 1/ {3 
increases'" d(J for some constant a. Extracting the exponent by measuring the slope 
of the log-log graph turned out to be very error prone, since the data only ranged 
over one order of magnitude. An alternate method for obtaining the exponent is 
to look for a particular exponent a by setting 5 = ad(J. Since a linear scaling 
relationship is theoretically plausible, we measured the failure rate of the network 
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Figure 2: In f as a function of S. d = 25. The slope was == -0.01 

at S = ad for various values of a. As Figure 3 shows, the failure rate remains more 
or less constant for fixed values of a, indicating a linear scaling relationship with d. 
Thus O( d) training patterns should be required to learn majority to a fixed level of 
performance. Note that if we require perfect learning, then the failure rate has to 
be < 1/(2d - S) ,..,. 1/2d • By substituting this for f in the above formula and solving 
for S, we get that (1 )(dln 2 + In a) patterns are required. The extra factor of d 

suggests that O( d2) would be required to learn majority perfectly. We will show in 
Section 6.1 that this is actually an overestimate. 

5 THE INPUT REPRESENTATION 

So far in our simulations we have used the representation commonly used for boolean 
predicates. Whenever an input feature has been true, we clamped the corresponding 
input unit to a 1, and when it has been off we have clamped it to a O. There is no 
reason, however, why some other representation couldn't have been used. Notice 
that in back propagation the weight change is proportional to the incoming input 
signal, hence the weight from a particular input unit to the output unit is changed 
only when the pattern is misclassified and the input unit is non-zero. The weight 
remains unchanged when the input unit is O. If the 0,1 representation were changed 
to a-l,+1 representation each weight will be changed more often, hence the network 
should learn the training set quicker (simulations in [Stornetta and Huberman, 81] 
reported such a decrease in training time using a -i, +i representation.) 



164 Ahmad and Tesauro 

f 
0.50 

0.42 

0.33 

0.25 

0.17 

0.08 

~~--------------------

-
S=3d 

S=5d 

S=7d 

0.00 +----+----+-----+---+----+---.... 60 
20 27 33 40 47 53 

d 

Figure 3: Failure ra.te VB d with S = 3d, 5d, 7 d. 

We found that not only did the training time decrease with the new representation, 
the generalization of the network improved significantly. The scaling of the failure 
rate with respect to S is unchanged, but for any fixed value of S, the generalization 
is about 5 - 10% better. Also, the scaling with respect to dis still linear, but the 
constant for a fixed performance level is smaller. Although the exact reason for 
the improved generalization is unclear, the following might be a plausible reason. 
A weight is changed only if the corresponding input is non-zero. By the definition 
of the majority function, the average number of units that are on for the positive 
instances is higher than for the negative instances. Hence, using the 0,1 represen­
tation, the weight changes are more pronounced for the positive instances than for 
the negative instances. Since the weights are changed whenever a pattern is mis­
classified, the net result is that the weight change is greater when a positive event 
is misclassified than when a negative event is misclassified. Thus, there seems to be 
a bias in the 0,1 representation for correcting the hyperplane more when a positive 
event is misclassified. In the new representation, both positive and negative events 
are treated equally hence it is unbiased. 

The basic lesson here seems to be that one should carefully examine every choice 
that has been made during the design process. The representation of the input, 
even down to such low level details as deciding whether "off" should be represented 
as 0 or -1, could make a significant difference in the generalization. 
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6 BORDER PATTERNS 

We now consider a method for improving the generalization by intelligently selecting 
the patterns in the training set. Normally, for a given training set, when the inputs 
are spread evenly around the input space, there can be several generalizations which 
are consistent with the patterns. The performance of the network on the test 
set becomes a random event, depending on the initial state of the network. If 
practical, it makes sense to choose training patterns whic~ can limit the possible 
generalizations. In particular, if we can find those examples which are closest to 
the separating surface, we can maximally constrain the number of generalizations. 
The solution that the network converges to using these "border" patterns should 
have a higher probability of being a good separator. In general finding a perfect 
set of border patterns can be computationally expensive, however there might exist 
simple heuristics which can help select good training examples. 

We explored one heuristic for choosing such points: selecting only those patterns 
in which the number of 1 's is either one less or one more than half the number 
of input units. Intuitively, these inputs should be close to the desired separating 
surface, thereby constraining' the network more than random patterns would. Our 
results show that using only border patterns in the training set, there is a large 
increase in the expected performance of the network for a given S. In addition, the 
scaling behavior as a function of S seems to be very different and is faster than an 
exponential decrease. (Figure 4 shows typical failure rate vs S curves comparing 
border patterns, the -1,+1 representation, and the 0,1 representation.) 

6.1 BORDER PATTERNS AND PERFECT LEARNING 

We say the network has perfectly learned a function when the test patterns are never 
misclassified. For the majority function, one can argue that at least some border 
patterns must be present in order to guarantee perfect performance. If no border 
patterns were in the training set, then the network could have learned the f - 1 
of d or the f + 1 of d function . Furthermon~, if we know that a certain number 
of border patterns is guaranteed to give perfect performance, say bed), then given 
the probability that a random pattern is a border pattern, we can calculate the 
expected number of random patterns sufficient to learn majority. 

For odd d, there are 2 * ( ; ) border patterns, so the probability of choosing a 

border pattern randomly is: 

( ; ) 
2d- 1 

As d gets larger this probability decreases as 1/.fd.* The expected number of ran­
domly chosen patterns required before b( d) border patterns are chosen is therefore: 

0* This can be shown using Stirling's approximation to d!. 
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Figure 4: Graph showing the average failure rate vs. S using the 0,1 representation 
(right), the -1,+1 representation (middle), and using border patterns (left). The network 
had 23 inputs units and was tested on a test set consisting of 1024 patterns. 

b( cl)Vd. From our data we find that 3d border patterns are always sufficient to learn 
the test set perfectly. From this, and from the theoretical results in [Cover, 65], we 
can be confident that b( cI) is linear in d. Thus, O( fi3/2) random patterns should be 
sufficient to learn majority perfectly. 

It should be mentioned that border patterns are not the only patterns which con­
tribute to the generalization of the network. Figure 5 shows that the failure rate of 
the network when trained with random training patterns which happen to contain 
b border patterns is substantially better than a training set consisting of only b 
border patterns. Note that perfect performance is achieved at the same point in 
both cases. 

7 CONCLUSION 

In this paper we have described a systematic study of some of the various factors 
affecting scaling and generalization in neural networks. Using empirical studies in 
a simple test domain, we were able to obtain precise scaling relationships between 
the performance of the network, the number of training patterns, and the size of 
the network. It was shown that for a fixed network size, the failure rate decreases 
exponentially with the size of the training set. The number of patterns required to 
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Figure 5: This figure compares the failure rate on a random training set which happens 
to contain b border patterns (bottom plot) with a training set composed of only b border 
patterns (top plot). 

achieve a fixed performance level was shown to increase linearly with the network 
SIZe. 

A general finding was that the performance of the network was very sensitive to a 
number of factors. A slight change in the input representation caused a jump in the 
performance of the network. The specific patterns in the training set had a large 
influence on the final weights and on the generalization. By selecting the training 
patterns intelligently, the performance of the network was increased significantly. 

The notion of border patterns were introduced as the most interesting patterns in 
the training set. As far as the number of patterns required to teach a function 
to the network, these patterns are near optimal. It was shown that a network 
trained only on border patterns generalizes substantially better than one trained 
on the same number of random patterns. Border patterns were also used to derive 
an expected bound on the number of random patterns sufficient to learn majority 
perfectly. It was shown tha,t on average, O(d3 / 2 ) random patterns are sufficient to 
learn majority perfectly. 

In conclusion, this paper advocates a careful study of the process of generalization 
in neural networks. There are a large number of different factors which can affect 
the performance. Any assumptions made when applying neural networks to a real­
world problem should be made with care. Although much more work needs to be 
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done, it was shown that many of the issues can be effectively studied in a simple 
test domain. 
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