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Abstract 
A new optimization strategy, Mean Field Annealing, is presented. 
Its application to MAP restoration of noisy range images is derived 
and experimentally verified. 

1 Introduction 

The application which motivates this paper is image analysis; specifically the anal­
ysis of range images. We [BS86] [GS87] and others [YA85][BJ88] have found that 
surface curvature has the potential for providing an excellent, view-invariant fea­
ture with which to segment range images. Unfortunately, computation of curvature 
requires, in turn, computation of second derivatives of noisy data. 
We cast this task as a restoration problem: Given a measurement g(z, y), we assume 
that g(z, y) resulted from the addition of noise to some "ideal" image fez, y) which 
we must estimate from three things: 

1. The measurement g(z, y). 
2. The statistics of the noise, here assumed to be zero mean with variance (1'2. 

3. Some a priori knowledge of the smoothness of the underlying surface(s). 

We will turn this restoration problem into a minimization, and solve that mini­
mization using a strategy called Mean Field A nnealing. A neural net appears to be 
the ideal architecture for the reSUlting algorithm, and some work in this area has 
already been reported [CZVJ88]. 

2 Simulated Annealing and Mean Field Anneal-
• Ing 

The strategy of SSA may be summarized as follows: 
Let H(f) be the objective function whose minimum we se~k, wher~ /is somt' pa­
rameter vector. 
A parameter T controls the algorithm. The SSA algorithm begins at a relatively 
high value of T which is gradually reduced. Under certain conditions, SSA will 
converge to a global optimum, [GGB4] [RS87] 

H (f) = min{ H (fie)} V fie (1) 
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even though local minima may occur. However, SSA suffers from two drawbacks: 

• It is slow, and 
• there is no way to directly estimate [MMP87] a continuously-valued I or its 

derivatives. 

The algorithm presented in section 2.1 perturbs (typically) a single element of fat 
each iteration. In Mean Field Annealing, we perturb the entire vector f at each 
iteration by making a deterministic calculation which lowers a certain average of 
H, < H(f) >, at the current temperature. We thus perform a rather conventional 
non-linear minimization (e.g. gradient descent), until a minimum is found at that 
temperature. We will refer to the minimization condition at a given T as the 
equilibrium for that T. Then, T is reduced, and the previous equilibrium is used as 
the initial condition for another minimization. 
MFA thus converts a hard optimization problem into a sequence of easier problems. 
In the next section, we justify this approach by relating it to SSA. 

2.1 Stochastic Simulated Annealing 

The problem to be solved is to find j where j minimizes H(f). SSA solves this 
minimization with the following strategy: 

1. Define PT ex e- H / T . 
2. Find the equilibrium conditions on PT, at the current temperature, T. By equi­

librium, we mean that any statistic ofpT(f) is constant. These statistics could 
be derived from the Markov chain which SSA constructs: jO, p, ... , IN, ... , al­
though in fact such statistical analysis is never done in normal running of an 
SSA algorithm. 

3. Reduce T gradually. 
4. As T --+ 0, PT(f) becomes sharply peaked at j, the minimum. 

2.2 Mean Field Annealing 

In Mean Field Annealing, we provide an analytic mechanism for approximating the 
equilibrium at arbitrary T. In MFA, we define an error function, 

-H -Hfl 
fe--ordl fe T (H-Ho)dl 

EMF(Z, T) = Tln--=-H- - + -/j --- ---. 

f eTdl f e- TdJ 
(2) 

which follows from Peierl's inequality [BGZ76]: 

F ~ Fo+ < H - Ho > (3) 

-H -Hg 
where F = -Tlnf e---r-dl and Fo = -Tlnf e T dl . The significance of EMF is as 
follows: the minimum of EMF determines the best approximation given the form 
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of Ho to the equilibrium statistics of the SSA-generated MRF at T. We will then 
anneal on T. In the next section, we choose a special form for Ho to simplify this 
process even further. 

1. Define some Ho(f, z) which will be used to estimate H(f). 
2. At temperature T, minimize EMF(Z) where EMF is a functional of Ho and 

H which characterizes the difference between Ho and H. The process of 
minimizing EMF will result in a value of the parameter z, which we will 
denote as ZT. 

3. Define HT(f) = Ho(f, ZT) and for(f) ex e- iiT /T. 

3 Image Restoration Using MFA 

We choose a Hamiltonian which represents both the noise in the image, and our a 
priori knowledge of the local shape of the image data. 

"" 1 2 HN = L.J -2 2 (Ii - gil 
• (1' 

(4) 
, 

(5) 

where 18( represents [Bes86] the set of values of pixels neighboring pixel i (e.g. the 
value of I at i along with the I values at the four nearest neighbors of i); A is some 
scalar valued function of that set of pixels (e.g. the 5 pixel approximation to the 
Laplacian or the 9 pixel approximation to the quadratic variation); and 

(6) 

The noise term simply says that the image should be similar to the data, given noise 
of variance (1'2. The prior term drives toward solutions which are locally planar. Re­
cently, a simpler V(z) = z2 and a similar A were successfully used to design a neural 
net [CZVJ88] which restores images consisting of discrete, but 256-valued pixels. 
Our formulation of the prior term emphasizes the importance of "point processes," 
as defined [WP85] by Wolberg and Pavlidis. While we accept the eventual necessity 
of incorporating line processes [MMP87] [Mar85] [GG84] [Gem87] into restoration, 
our emphasis in this paper is to provide a rigorous relationship between a point 
process, the prior model, and the more usual mathematical properties of surfaces. 
Using range imagery in this problem makes these relationships direct. By adopting 
this philosophy, we can exploit the results of Grimson [Gri83] as well as those of 
Brady and Horn [BH83] to improve on the Laplacian. 
The Gaussian functional form of V is chosen because it is mathematically conve­
nient for Boltzmann statistics and beca.use it reflects the following shape properties 
recommended for grey level images in the literature and is especially important if 
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line processes are to be omitted: Besag [Bes86] notes that lito encourage smooth 
variation", V(A) "should be strictly increasing" in the absolute value of its argu­
ment and if "occasional abrupt changes" are expected, it should "quickly reach a 
maximum" . 
Rational functions with shapes similar to our V have been used in recent stochastic 
approaches to image processing [GM85]. In Eq. 6, T is a "soft threshold" which 
represents our prior knowledge of the probability of various values of \7 2 f (the 
Laplacian of the undegraded image). For T large, we imply that high values of 
the Laplacian are common - f is highly textured; for small values of T, we imply 
that f is generally smooth. We note that for high values of T, the prior term is 
insignificant, and the best estimate of the image is simply the data. 
We choose the Mean Field Hamiltonian to be 

(7) 

and find that the optimal ZT approximately minimizes 

(8) 

both at very high and very low T . We have found experimentally that this approx­
imation to ZT does anneal to a satisfactory restoration. At each temperature, we 
use gradient descent to find ZT with the following approximation to the gradient of 
<H>: 

(9) 

and 
-b .. ? 

V(r·) - e- 2( .. h) 
, - y'2;(T+T) . (lO) 

Differentiating Eq. 8 with this new notation, we find 

(11) 

Since 6'+11,; is non-zero only when i + v = i, we have 

8 < H > _ :J!j - gj L L IT'(. ) 
8 - 2 + -II ')+11 

:J! . (1' 
) II 

(12) 

and this derivative can be used to find the equilibrium condition. 

Algorithm 
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1. Initially, we use the high temperature assumption, which eliminates the prior 
term entirely, and results in 

Z; =g;; for T = 00. (13) 

This will provide the initial estimate of z. Any other estimate quickly con­
verges to g. 

2. Given an image z;, form the image ri = (L ® z);, where the ® indicates 
convolution. 

..? 
3. Create the image V. = V' (r·) = - -----l= _-.!'L e - :II(T~ .. ) • 

P , ~T+T)T+T 

4. Using 12, perform ordinary non-linear minimization of < H > starting from 
the current z. The particular strategy followed is not critical. We have 
successfully used steepest descent and more sophisticated conjugate gradi­
ent [PFTV88] methods. The simpler methods seem adequate fot Gaussian 
noise. 

5. Update z to the minimizing z found in step 4. 
6. Reduce T and go to 2. When T is sufficiently close to 0, the algorithm is 

complete. 

In step 6 above, T essentially defines the appropriate low-temperature stopping 
point. In section 5, we will elaborate on the determination of T and other such 
constants. 

4 Performance 

In this section, we describe the performance of the algorithm as it is applied to 
several range images. We will use range images, in which the data is of the form 

z = z(z, y). (14) 

4.1 Images With High Levels of Noise 

Figure 1 illustrates a range image consisting of three objects, a wedge (upper left), 
a cylinder with rounded end and hole (right), and a trapezoidal block viewed from 
the top. The noise in this region is measured at (1' = 3units out of a total range of 
about 100 units . Unsophisticated smoothing will not estimate second derivatives of 
such data without blurring. Following the surface interpolation literature, [Gri83] 
[BB83] we use the quadratic variation as the argument of the penalty function for 
the prior term to 

(15) 

and performing the derivative in a manner analogous to Eq. 11 and 12. The 
Laplacian of the restoration is shown in Figure 2. Figure 3 shows a cross-section 
taken as indicated by the red line on Figure 2. 



Fig. 1 Original rallge image 

Fig. 2 Laplacian of the restored image 

4.2 Comparison With Existing Techniques 

I n 

J~~ l\~lll 
Fig. 3 Cross section 
Through Laplacian along 
Red Line 

Accurate computation of surface derivatives requires extremely good smoothing of 
surface noise, while segmentation requires preservat.ion of edges. One suc.h adapt.ive 
smoothing technique,[Ter87] iterative Gaussian smoothing (IGS) has been success­
fully applied to range imagery. [PB87] Following this strategy, step edges are first 
detected, and smoothing is then applied using a small center-weighted kernel. At 
edges, an even smaller kernel, called a "molecule", is used to smooth right up to 
the edge without blurring the edge. The smoothing is then iterated. 
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The results, restoration and Laplacian, of IGS are not nearly as sharp as those 
shown in Figure 2. 

5 Determining the Parameters 

Although the optimization strategy described in section 3 has no hard thresholds, 
several parameters exist either explicitly in Eq. 8 or implicitly in the iteration. 
Good estimates of these parameters will result in improved performance, faster 
convergence, or both. The parameters are: 

(1' the standard deviation of the noise 
b the relative magnitude of the prior term 
11 = T + T the initial temperature and 
T the final temperature. 

The decrement in T which defines the annealing schedule could also be considered 
a parameter. However, we have observed that 10% or less per step is always good 
enough. 
We find that for depth images of polyhedral scenes, T = 0 so that only one parameter 
is problem dependent: (1'. For the more realistic case of images which also contain 
curved surfaces, however, see our technical report [BS88], which also describes the 
MFA derivation in much more detail. 
The standard deviation of the noise must be determined independently for each 
problem class. It is straightforward to estimate (1' to within 50%, and we have 
observed experimentally that performance of the algorithm is not sensitive to this 
order of error. 
We can analytically show that annealing occurs in the region T:::::: IL12(1'2 and choose 
TJ = 2ILI2(1'2. Here, ILI2 is the squared norm of the operator Land ILI2 = 20 for 
the usual Laplacian and ILI2 = 12.5 for the quadratic variation. 
Further analysis shows that b = .J2;ILI(1' is a good choice for the coefficient of the 
prior term. 
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