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We introduce an optimization approach for solving problems in com­
puter vision that involve multiple levels of abstraction. Our objective 
functions include compositional and specialization hierarchies. We cast 
vision problems as inexact graph matching problems, formulate graph 
matching in terms of constrained optimization, and use analog neural 
networks to perform the optimization. The method is applicable to per­
ceptual grouping and model matching. Preliminary experimental results 
are shown. 

1 Introduction 
The minimization of objective functions is an attractive way to formulate and solve 
visual recognition problems. Such formulations are parsimonious, being expressible 
in several lines of algebra, and may be converted into artificial neural networks 
which perform the optimization. Advantages of such networks including speed, 
parallelism, cheap analog computing, and biological plausibility have been noted 
[Hop field and Tank, 1985]. 
According to a common view of computational vision, recognition involves the con­
struction of abstract descriptions of data governed by a data base of models. Ab­
stractions serve as reduced descriptions of complex data useful for reasoning about 
the objects and events in the scene. The models indicate what objects and properties 
may be expected in the scene. The complexity of visual recognition demands that 
the models be organized into compositional hierarchies which express object-part 
relationships and specialization hierarchies which express object-class relationships. 
In this paper, we describe a methodology for expressing model-based visual recog­
nition as the constrained minimization of an objective function. Model-specific 
objective functions are used to govern the dynamic grouping of image elements into 
recognizable wholes. Neural networks are used to carry out the minimization. 

°This work was supported in part by AFOSR grant F49620-88-C-002S, and by DARPA grant 
DAAAlS-87-K-OOOl, by ONR grant N00014-86-0310. 
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Previous work on optimization in vision has typically been restricted to computa­
tions occuring at a single of level of abstraction and/or involving a single model 
[Barrow and Popplestone, 1971,Hummel and Zucker, 1983,Terzopoulos, 1986]. For 
example, surface interpolation schemes, even when they include discontinuities 
[Terzopoulos, 1986] do not include explicit models for physical objects whose surface 
characteristics determine the expected degree of smoothness. By contrast, hetero­
geneous and hierarchical model-bases often occur in non-optimization approaches 
to visual recognition [Hanson and Riseman, 1986] including some which use neural 
networks [Ballard, 1986]. We attempt to obtain greater express ability and efficiency 
by incorporating hierarchies of abstraction into the optimization paradigm. 

2 Casting Model Matching as Optimization 
We consider a type of objective function which, when minimized by a neural 
network, is capable of expressing many of the ideas found in Frame systems 
in Artificial Intelligence [Minsky, 1975]. These "Frameville" objective functions 
[Mjolsness et al., 1988,Mjolsness et al., 1989] are particularly well suited to appli­
cations in model-based vision, with frames acting as few-parameter abstractions of 
visual objects or perceptual groupings thereof. Each frame contains real-valued pa­
rameters, pointers to other frames, and pointers to predefined models (e.g. models 
of objects in the world) which determine what portion of the objective function acts 
upon a given frame. 

2.1 Model Matching as Graph Matching 

Model matching involves finding a match between a set of frames, ultimately derived 
from visual data, and the predefined static models. A set of pointers represent 
object-part relationships between frames, and are encoded as a graph or sparse 
matrix called ina. That is, inaij = 0 unless frame j is "in" frame i as one of its 
parts, in which case inaij = 1 is a "pointer" from j to i. The expected object­
part relationships between the corresponding models is encoded as a fixed graph 
or sparse matrix INA. A form of inexact graph-matching is required: ina should 
follow INA as much as is consistent with the data. 
A sparse match matrix M (0 < Meti < 1) of dynamic variables represents the 
correspondence between model a and frame i. To find the best match between the 
two graphs one can minimize a simple objective function for this match matrix, due 
to Hopfield [Hopfield, 1984] (see also [Feldman et al., 1988,Malsburg, 1986]), which 
just counts the number of consistent rectangles (see Figure 1a): 

E(M) = - ~~INAet~inaijMaiM~j. 
et{3 ij 

(1) 

This expression may be understood as follows: For model a and frame i, the match 
value Meti is to be increased if the neighbors of a (in the INA graph) match to the 
neighbors of i (in the ina graph). 
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Figure 1: (a) Examples of Frameville rectangle rule. Shows the rectangle re­
lationship between frames (triangles) representing a wing of a plane, and the plane 
itself. Circles denote dynamic variables, ovals denote models, and triangles denote 
frames. For the plane and wing models, the first few parameters of a frame are 
interpreted as position, length, and orientation. (b) Frameville sibling compe­
tition among parts. The match variables along the shaded lines (M3,9 and M2,7) 
are suppressed in favor of those along the solid lines (M2,9 and M 3,7)' 

Note that E(M) as defined above can be trivially minimized by setting all the el­
ements of the match matrix to unity. However, to do so will violate additional 
syntactic constraints of the form h(M) = 0 which are imposed on the optimization, 
either exactly (Platt and Barr, 1988] or as penalty terms (Hopfield and Tank, 1985] 
~h2(M) added to the objective function. Originally the syntactic constraints 
simply meant that each frame should match one model and vice versa, as in 
(Hopfield and Tank, 1985]. But in Frameville, a frame can match both a model 
and one of its specializations (described later), and a single model can match any 
number of instances or frames. In addition one can usually formulate constraints 
stating that if a model matches a frame then two distinct parts of the same model 
must match two distinct part frames and vice-versa. \Ve have found the following 
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formulation to be useful: 

~ INAa{3Mai - ~ inaijM{3j 
a j 

J 

E inaijMai - E 1NAa{3M{3j 
{3 

0, "'p, i (2) 

0, Va,j (3) 

where the first sum in each equation is necessary when several high-level models 
(or frames) share a part. (It turns out that the first sums can be forced to zero 
or one by other constraints.) The resulting competition is illustrated in Figure lb. 
Another constraint is that M should be binary-valued, i.e., 

(4) 

but this constraint can also be handled by a special "analog gain" term in 
the objective function [Hopfield and Tank, 1985] together with a penalty term 
c Eai Mai(l - Mai). 
In Frameville, the ina graph actually becomes variable, and is determined by a dy­
namic grouping or "perceptual organization" process. These new variables require 
new constraints, starting with inaij (1 - inaij) = 0, and including many high-level 
constraints which we now formulate. 

2.2 Franles and Objective Functions 

Frames can be considered as bundles ~ of real-valued parameters Fip, where p 
indexes the different parameters of a frame. For efficiency in computing complex 
arithmetic relationships, such as those involved in coordinate transformations, an 
analog representation of these parameters is used. A frame contains no information 
concerning its match criteria or control flow; instead, the match criteria are ex­
pressed as objective functions and the control flow is determined by the partiCUlar 
choice of a minimization technique. 
In Figure la, in order for the rectangle (1,4,9,2) to be consistent, the parameters 
F4p and F9p should satisfy a criterion dictated by models 1 and 2, such as a restric­
tion on the difference in angles appropriate for a mildly swept back wing. Such a 
constraint results in the addition of the following term to the objective function: 

L lNAa{3 inaij MaiM{3j Ha{3(~, Pj) (5) 
i,j,a,{3 

where Ha{3(~, Fj) measures the deviation of the parameters of the data frames from 
that demanded by the models. The term H can express coordinate transformation 
arithmetic (e.g. H a{3(Xi, Xj) = 1/2[xi - Xj - D.xa{3]2), and its action on a frame f;. 
is selectively controlled or "gated" by M and ina variables. This is a fundamental 
extension of the distance metric paradigm in pattern recognition; because of the 
complexity of the visual world, we use an entire database of distance metrics H a {3. 
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Figure 2: Frameville specialization hierarchy. The plane model specializes 
along 154. links to a propeller plane or a jet plane and correspondingly the wing 
model specializes to prop-wing or jet-wing. Sibling match variables M 6 ,4 and M4 ,4 

compete as do M7,9 and M S,9. The winner in these competitions is determined by 
the consistency of the appropriate rectangles, e.g. if the 4-4-9-5 rectangle is more 
consistent than the 6-4-9-7 rectangle, then the jet model is favored over the prop 
model. 

We index the models (and, indirectly, the data base of H metrics) by introducing 
a static graph of pointers I54. OI {j to act as both a specialization hierarchy and a 
discrimination network for visual recognition. A frame may simultaneously match 
to a model and just one of its specializations: 

Mcxi - L I54.cx{jMf3i = o. 
f3 

(6) 

As a result, 154. siblings compete for matches to a given frame (see Figure 2); this 
competition allows the network to act as a discrimination tree. 

Frameville networks have great expressive power, but have a potentially serious 
problem with cost: for n data frames and m models there may be O(nm + 71 2 ) 

neurons widely interconnected but sparsely activated. The number of connections 
is at most the number of monomials in the polynomial objective function, namely 
n2m/, where / is the fan-out of the INA graph. One solution to the cost prob­
lem, used in the line grouping experiments reported in [Mjolsness et al., 1989], is to 
restrict the flexibility of the frame system by setting most M and ina neurons to 
zero permanently. The few remaining variables can form an efficient data structure 



Model Matching and Perceptual Organization 623 

such as a pyramid in vision. A more flexible solution might enforce the sparseness 
constraints on the M and ina neurons during minimization, as well as at the fixed 
point. Then large savings could result from using "virtual" neurons (and connec­
tions) which are created and destroyed dynamically. This and other cost-cutting 
methods are a subject of continuing research. 

3 Experimental Results 
We describe here experiments involving the recognition of simple stick figures. 
(Other experiments involving the perceptual grouping of lines are reported in 
[Mjolsness et al., 1989].) The input data (Figure 3(a)) are line segments param­
eterized by location x, y and orientation (), corresponding to frame parameters Fjp 
(p = 1,2,3). As seen in Figure 3(b), there are two high-level models, "T" and 
"L" junctions, each composed of three low-level segments. The task is to recognize 
instances of "T", "L", and their parts, in a translation-invariant manner. 

The parameter check term H cx{3 of Equation 5 achieves translation invariance by 
checking the location and orientation of a given part relative to a designated main 
part and is given by: 

Ha{3(~, ff;) = I)Fip - Fjp - ~;{3)2 (7) 
P 

Here Fjp and Fip are the slots of a low-level segment frame and a high-level main 
part, respectively, and the quantity ~~{3 is model information that stores coordinate 
differences. (Rotation invariance can also be formulated if a different parameteri­
zation is used.) It should be noted that absence of the main part does not preclude 
recognition of the high-level model. 
We used the unconstrained optimization technique in [Hopfield and Tank, 1985] and 
achieved improved results by including terms demanding that at most one model 
match a given frame, and that at most one high-level frame include a given low-level 
frame as its part [Mjolsness et al., 1989]. 
Figure 3(c) shows results of attempts to recognize the junctions in Figure 3(a). 
When initialized to random values, the network becomes trapped in unfavorable 
local minima of the fifth-order objective function. (But with only a single high-level 
model in the database, the system recognizes a shape amid noise.) If, however, the 
network is given a "hint" in the form of an initial state with mainparts and high-level 
matches set correctly, the network converges to the correct state. 
There is a great deal of unexploited freedom in the design of the model base and 
its objective functions; there may be good design disciplines which avoid introduc­
ing spurious local minima. For example, it may be possible to use ISA and INA 
hierarchies to guide a network to the desired local minimum. 
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Figure 3: (a) Input data consists of unit-length segments oriented horizontally or 
vertically. The task is translation-invariant recognition of three segments forming a 
liT" junction (e.g. sticks 1,2,3) or an "L" (e.g. sticks 5,6,7) amid extraneous noise 
sticks. (b) Structure of network. Models occur at two levels. INA links are 
shown for a liT". Each frame has three parameters: position x, y and orientation 
e. Also shown are some match and ina links. The bold lines highlight a possible 
consistency rectangle. (c) Experhnental result. The value of each dynamical 
variable is displayed as the relative area of the shaded portion of a circle. Matrix 
M{jj indicates low-level matches and MOti indicates high-level matches. Grouping 
of low-level to high-level frames is indicated by the ina matrix. The parameters of 
the high-level frames are displayed in the matrix Fip of linear analog neurons. (The 
parameters of the low-level frames, held fixed, are not displayed.) The few neurons 
circumscribed by a square, corresponding to correct matches for the main parts of 
each model, are clamped to a value near unity. Shaded circles indicate the final 
correct state. 
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4 Conclusion 
Frameville provides opportunities for integrating all levels of vision in a uniform no­
tation which yields analog neural networks. Low-level models such as fixed convo­
lution filters just require analog arithmetic for frame parameters, which is provided. 
High-level vision typically requires structural matching, also provided. Qualitatively 
different models may be integrated by specifying their interactions, H cx /3. 
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