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ABSTRACT 

This paper presents a variation of the back-propagation algo
rithm that makes optimal use of a network hidden units by de
cr~asing an "energy" term written as a function of the squared 
activations of these hidden units. The algorithm can automati
cally find optimal or nearly optimal architectures necessary to 
solve known Boolean functions, facilitate the interpretation of 
the activation of the remaining hidden units and automatically 
estimate the complexity of architectures appropriate for phonetic 
labeling problems. The general principle of the algorithm can 
also be adapted to different tasks: for example, it can be used to 
eliminate the [0, 0] local minimum of the [-1. +1] logistic acti
vation function while preserving a much faster convergence and 
forcing binary activations over the set of hidden units. 

PRINCIPLE 

This paper describes an algorithm which makes optimal use of the hidden units in 
a network using the standard back-propagation algorithm (Rumelhart. Hinton & 
Williams, 1986). Optimality is defined as the minimization of a function of the 
"energy" spent by the hidden units throughtout the network, independently of 
the chosen architecture, and where the energy is written as a function of the 
squared activations of the hidden units. 

The standard back-propagation algorithm is a gradient descent algorithm on the 
following cost function: 

P 0 

C = I I (dij- Oij)2 [1] 
j 

where d is the desired output of an output unit, 0 the actual output, and where 
the sum is taken over the set of output units 0 for the set of training patterns P. 

519 



520 Chauvin 

The following algorithm implements a gradient descent on the following cost func
tion: 

POP H 

C = IJer I I (dij - Oij)'l + IJen I I e(ot) [2] 
j j 

where e is a positive monotonic function and where the sum of the second term is 
now taken over a set or subset of the hidden units H. The first term of this cost 
function will be called the error term, the second, the energy term. 

In principle, the theoretical minimum of this function is found when the desired 
activations are equal to the actual activations for all output units and all presented 
patterns and when the hidden units do not "spend any energy". In practical 
cases, such a minimum cannot be reached and the hidden units have to "spend 
some energy" to solve a given problem. The quantity of energy will be in pan 
determined by the relative importance given to the error and energy terms during 
gradient descent. In principle, if a hidden unit has a constant activation whatever 
the pattern presented to the network, it contributes to the energy term only and 
will be "suppressed" by the algorithm. The precise energy distribution among the 
hidden units will depend on the actual energy function e. 

ANALYSIS 

ALGORITHM IMPLEMENTATION 

We can write the total cost function that the algorithm tries to minimize as a 
weighted sum of an error and energy term: 

[3] 

The first term is the error term used with the standard back-propagation algo
rithm in Rumelhan et al. If we have h hidden layers, we can write the total 
energy term as a sum of all the energy terms corresponding to each hidden layer: 

h Hi 

Een = I I e(o}) 
i j 

[4] 

To decrease the energy of the uppermost hidden layer Hh, we can compute the 
derivative of the energy function with respect to the weights. This derivative will 
be null for any weight "above" the considered hidden layer. For any weight just 
below the considered hidden layer, we have (using Rumelhan et al. notation): 
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[5] 

~en ae(ot) ae(01) a01 aOi 2'." ( ) 
U· = = ---= e OiJ ; net; 

I anet; a01 ao; anet; 
[6] 

where the derivative of e is taken with respect to the .. energy" of the unit i and 
where f corresponds to the logistic function. For any hidden layer below the 
considered layer h. the chain rule yields: 

d1n = f /c(net/c) I dj"Wj/c 
J 

[7] 

This is just. standard back-propagation with a different back-propagated term. If 
we minimize both the error at the output layer and the energy of the hidden layer 
h, we can compute the complete weight change for any connection below layer h: 

A _ ,ur ~en _ t.. A.er ~en) ~ac 
uW/C1 - - a!J.eru/c 01 - a!J.enu/c 01 - - aOI\P'eru/c + !J.enu/c = - aOlu/c [8] 

where d~c is now the delta accumulated for error and energy that we can write as 
a function of the deltas of the upper layer: 

[9] 

This means that instead of propagating the delta for both energy and error. we 
can compute an accumulated delta for hidden layer h and propagate it back 
throughout the network. If we minimize the energy of the layers hand h-J, the 
new accumulated delta will equal the previously accumulated delta added to a 
new delta energy on layer h-J. The procedure can be repeated throughout the 
complete network. In shon. the back-propagated error signal used to change the 
weights of each layer is simply equal to the back-propagated signal used in the 
previous layer augmented with the delta energy of the current hidden layer. (The 
algorithm is local and easy to implement). 

ENERGY FUNCTION 

The algorithm is sensitive to the energy function e being minimized. The func
tions used in the simulations described below have the following derivative with 
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respect to the squared activations/energy (only this derivative is necessary to im
plement the algorithm, see Equation [6]): 

[10] 

where n is an integer that determines the precise shape of the energy function 
(see Table 1) and modulates the behavior of the algorithm in the following way. 
For n = 0, e is a linear function of the energy: "high and low energy" units are 
equally penalized. For n = I, e is a logarithmic function and "low energy" units 
become more penalized than uhigh energy" units, in proportion to the linear 
case. For n = 2, the energy penalty may reach an asymptote as the energy in
creases: "high energy" units are not penalized more than umiddle energy" units. 
In the simulations, as expected, it appears that higher values of n tend to suppress 
"low e-nergy" units. (For n > 2, the behavior of the algorithm was not signifi
cantly different from n = 2. for the tests described below). 

TABLE 1: Energy Functions. 

0 
I 

1 
I 

2 
I 

n>2 n I I I 

I ! 0 2 I 0 2 Log(l +02) I ? e I I 1 +02 I 
I I I 

BOOLEAN EXAMPLES 

The algorithm was tested with a set of Boolean problems. In typical tasks, the 
energy of the network significantly decreases during early learning. Later on, the 
network finds a better minimum of the total cost function by decreasing the error 
and by "spending" energy to solve the problem. Figure 1 shows energy and error 
in function of the number of learning cycles during a typical task (XOR) for 4 
different runs. For a broad range of the energy learning rate, the algorithm is 
quite stable and finds the solution to the given problem. This nice behavior is 
also quite independent of the variations of the onset of energy minimization. 

EXCLUSIVE OR AND PARITY 

The algorithm was tested with EXOR for various network architectures. Figure 2 
shows an example of the activation of the hidden units after learning. The algo
rithm finds a minimal solution (2 hidden units, "minimum logic") to solve the 
XOR problem when the energy is being minimized. This minimal solution is 
actually found whatever the starting number of hidden units. If several layers are 
used, the algorithm finds an optimal or nearly-optimal size for each layer. 



A Back-Propagation Algorithm 523 

~r-------'--------r------~--------__ ------~ 

0.16 

Figure 1. Energy and error curves as a function of the number of pattern 
presentations for different values of the "energy" rate (0, .1, .2, .4). Each 

energy curve (It e" label) is associated with an error curve (" +" label). 
During learning, the units "spend" some energy to solve the given task. 

With parity 3, for a [-1, +1] activation range of the sigmoid function, the algo
rithm does not find the 2 hidden units optimal solution but has no problem find
ing a 3 hidden units solution, independently of the staning architecture. 

SYMMETRY 

The algorithm was tested with the symmetry problem, described in Rumelhan et 
al. The minimal solution for this task uses 2 hidden units. The simplest form of 
the algorithm does not actually find this minimal solution because some weights 
from the hidden units to the output unit can actually grow enough to compensate 
the low activations of the hidden units. However, a simple weight decay can 
prevent these weights from growing too much and allows the network to find the 
minimal solution. In this case, the total cost function being minimized simply 
becomes: 
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Figure 2. Hidden unit activations of a 4 hidden unit network over the 4 
EXOR patterns when (left) standard back-propagation and (right) energy 
minimization are being used during learning. The network is reduced to 

minimal size (2 hidden units) when the . energy is being minimized. 

POP H W 

C = Per I I (di) - Oi)2 + Pen I Ie (ot) + Pw I wf) [11] 
j j ij 

PHONETIC LABELING 

The algorithm was tested with a phonetic labeling task. The input patterns con
sisted of spectrograms (single speaker, 10x3.2ms spaced time frames, centered, 
16 frequencies) corresponding to 9 syllables [ba] , [da], [ga], [bi] , [di], [gi] , and 
[bu] , [du] , [gu]. The task of the network was to classify these spectrograms (7 
tokens per syllable) into three categories corresponding to the three consonants 
[b], [g], and [g]. Starting with 12 hidden units, the algorithm reduced the net
work to 3 hidden units. (A hidden unit is considered unused when its activation 
over the entire range of patterns contributes very little to the activations of the 
output units). With standard back-propagation, all of the 12 hidden units are 
usually being used. The resulting network is consistent with the sizes of the hid
den layers used by Elman and Zipser (1986) for similar tasks. 
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EXTENSION OF THE ALGORITHM 

Equation [2] represents a constraint over the set of possible LMS solutions found 
by the back-propagation algorithm. With such a constraint. the "zero-energy" 
level of the hidden units can be (informally) considered as an attractor in the 
solution space. However. by changing the sign of the energy gradient. such a 
point now constitutes a repellor in this space. Having such repellors might be 
useful when a set of activation values are to be avoided during learning. For 
example. if the activation range of the sigmoid transfer function is [-1. + 1]. the 
learning speed of the back-propagation algorithm can be greatly improved but the 
[0. 0] unit activation point (zero-input, zero-output) often behaves as a local 
minimum. By inversing the sign of the energy gradient during early learning, it is 
possible to have the point [0, 0] act as a repellor. forcing the network to make 
"maximal use" of its resources (hidden units). This principle was tested on the 
parity-3 problem with a network of 7 hidden units. For a given set of coeffi
cients. standard back-propagation can solve parity-3 in about 15 cycles but yields 
about 65%. of local minima in [0. 0]. By using the "repulsion" constraint, par
ity-3 can be solved in about 20 cycles with 0% of local minima. 

Interestingly, it is also possible to design a I'trajectory" of such constraints during 
learning. For example, the [0, 0] activation point can be built as a repellor 
during early learning in order to avoid the corresponding local minimum, then as 
an attractor during middle learning to reduce the size of the hidden layer. and as 
a repulsor during late learning, to force the hidden units to have binary activa
tions. This type of trajectory was tested on the parity-3 problem with 7 hidden 
units. In this case, the algorithm always avoids the [0, 0] local minimum. More
over, the network can be reduced to 3 or 4 hidden units taking binary values over 
the set of input patterns. In contrast, standard back-propagation often gets stuck 
in local minima and uses the initial 7 hidden units with analog activation values. 

CONCLUSION 

The present algorithm simply imposes a constraint over the LMS solution space. 
It can be argued that limiting such a solution space can in some cases increase the 
generalizing propenies of the network (curve-fitting analogy). Although a com
plete theory of generalization has yet to be formalized, the present algorithm 
presents a step toward the automatic design of "minimal" networks by imposing 
constraints on the activations of the hidden units. (Similar constraints on weights 
can be imposed and have been tested with success by D. E. Rumelhan, Personal 
Communication. Combinations of constraints on weights and activations are be
ing tested). What is simply shown here is that this energy minimization principle 
is easy to implement, is robust to a brQad range of parameter values, can find 
minimal or nearly optimal network sizes when tested with a variety of tasks and 
can be used to "bend" trajectories of activations during learning. 
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