
LEARNING SEQUENTIAL STRUCTURE
IN SIMPLE RECURRENT NETWORKS

David Servan-Schreiber. Axel Cleeremans. and James L. McClelland
Departtnents of Computer Science and Psycholgy

Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACT

We explore a network architecture introduced by Elman (1988) for
predicting successive elements of a sequence. The network uses the
pattern of activation over a set of hidden units from time-step t-l,
together with element t, to predict element t+ 1. When the network is
trained with strings from a particular finite-state grammar, it can learn
to be a perfect finite-state recognizer for the grammar. Cluster analyses
of the hidden-layer patterns of activation showed that they encode
prediction-relevant information about the entire path traversed through
the network. We illustrate the phases of learning with cluster analyses
performed at different points during training.

Several connectionist architectures that are explicitly constrained to capture
sequential infonnation have been developed. Examples are Time Delay
Networks (e.g. Sejnowski & Rosenberg. 1986) -- also called 'moving
window' paradigms -- or algorithms such as back-propagation in time
(Rumelhart. Hinton & Williams. 1986), Such architectures use explicit
representations of several consecutive events. if not of the entire history of
past inputs. Recently. Elman (1988) has introduced a simple recurrent
network (SRN) that has the potential to master an infinite corpus of
sequences with the limited means of a learning procedure that is completely
local in time (see Figure I.).

CONIlSrr UNI'l'S

Figure 1. The simple recurrent network (Elman, 1988)

643

644 Servan-Schreiber, Cleeremans and McClelland

In the SRN. the pattern of activation on the hidden units at time t-I.
together with the new input pattern. is allowed to influence the pattern of
activation at time t . This is achieved by copying the pattern of activation on
the hidden layer at time t·I to a set of input units -- called the 'context units'
-- at time t. The forward connections in the network are subject to training
via back-propagation. but there is no backpropagation through time.

In this paper. we show that the SRN can learn to mimic closely a flnite state
automaton. both in its behavior and in its state representations. In particular.
we show that it can learn to process an infinite corpus of strings based on
experience with afinite set of training exemplars. We then describe the
phases through which the appropriate internal representations are discovered
during training.

MASTERING A FINITE STATE GRAMMAR

In our first experiment. we asked whether the network could learn the
contingencies implied by a small flnite state grammar (see Figure 2). The
network was presented with strings derived from this grammar. and was
required to try to predict the next letter at every step. These predictions are
context dependent since each letter appears twice in the grammar and is
followed in each case by different successors.

A single unit on the input layer represented a given letter (six input units in
total; flve for the letters and one for a begin symbol 'B'). Similar local
representations were used on the output layer (with the 'begin' symbol
being replaced by an end symbol 'E'). There were three hidden units.

s

.tart -~

T

Figure 2. The small fmite-state grammar (Reber. 1967)

Training. On each of 60.000 training trials. a string was generated from
the grammar. starting with 'B'. Successive arcs were selected randomly
from the 2 possible continuations with a probability of 0.5. Each letter was

Learning Sequential Structure in Simple Recurrent Networks 645

then presented sequentially to the network. The activations of the context
units were reset to 0.5 at the beginning of each string. After each letter, the
error between the network's prediction and the actual successor specified
by the string was computed and back-propagated. The 60,000 randomly
generated strings ranged from 3 to 30 letters (mean: 7; sd: 3.3).

Performance. Three tests were conducted. First, we examined the
network's predictions on a set of 70,000 random strings. During this test,
the network is first presented with the start signal, and one of the five letters
or E is then selected at random as a successor. If that letter is predicted by
the network as a legal successor (Le, activation is above 0.3 for the
corresponding unit), it is then presented to the input layer on the next time
step, and another letter is drawn at random as its successor. This procedure
is repeated as long as each letter is predicted as a legal successor until the
end signal is selected as the next letter. The procedure is interrupted as soon
as the actual successor generated by the random procedure is not predicted
by the network, and the string of letters is then considered 'rejected'. A
string is considered 'accepted' if all its letters have been predicted as
possible continuations up to, and including, the end signal. Of the 70,000
random strings, 0.3 % were grammatical, and 99.7 % were ungrammatical.
The network performed flawlessly, accepting all the grammatical strings and
rejecting all the others. In a second test, we presented the network with
20,000 generated at random from the grammar, i.e, all these strings were
grammatical. Using the same criterion as above, all of these strings were
correctly 'accepted'. Finally, we constructed a set of very long grammatical
strings -- more than 100 letters long -- and verified that at each step the
network correcdy predicted all the possible successors (activations above
0.3) and none of the other letters in the grammar.

Analysis of internal representations. What kind of internal representations
have developed over the set of hidden units that allow the network to
associate the proper predictions to intrinsically ambiguous letters? One way
to answer this question is to record the hidden units' activation patterns
generated in response to the presentation of individual letters in different
contexts. These activation vectors can then be used as input to a cluster
analysis program. Figure 3.A. shows the results of such an analysis
conducted on a small random set of grammatical strings. The patterns of
activation are grouped according to the nodes of the grammar: all the
patterns that are used to predict the successors of a given node are grouped
together independently of the current letter. This observation sheds some
light on the behavior of the network: at each point in a sequence, the pattern
of activation stored over the context units provides information about the
current node in the grammar. Together with information about the current
letter (represented on the input layer), this contextual information is used to
produce a new pattern of activation over the hidden layer, that uniquely
specifies the next node. In that sense, the network closely approximates the
finite-state automaton that would encode the grammar from which the
training exemplars were derived. However, a closer look at the cluster
analysis reveals that within a cluster corresponding to a particular node,
patterns are further divided according to the path traversed before the node
is reached. For example, looking at the bottom cluster -- node #5 -- patterns
produced by a 'VV', 'PS', 'XS' or 'SXS' ending are grouped separately:

646 Servan-Schreiber, Cleeremans and McClelland

I

I

I

'~'--------~----~------------
I

• • Ie

..
!

• • Ie I
• • ...

Figure 3. A. Hieruchical cluster analysis of the hidden unit activation patternS after
60.000 presentations of Slrings generated at random from the finite-Slate grammar.

B. Cluster analysis of the H.U. activaDon pauans following 2000 epochs of
1raining 011 a set of 22 strings with a maximum length of eightlettets.

Learning Sequential Structure in Simple Recurrent Networks 64 7

they are more similar to each other than to the abstract prototype of node #5.
This tendency to preserve information about the path is not a characteristic
of traditional finite-state automata.

ENCODING PATH INFORMATION

In a different set of experiments, we asked whether the SRN could learn to
use the infonnation about the path that is encoded in the hidden units'
patterns of activation. In one of these experiments, we tested whether the
network could master length constraints. When strings generated from the
small finite-state grammar may only have a maximum of 8 letters, the
prediction following the presentation of the same letter in position number
six or seven may be different. For example, following the sequence
'TSSSXXV', 'V' is the seventh letter and only another 'V' would be a legal
successor. In contrast, following the sequence 'TSSXXV', both 'V' and
'P' are legal successors. A network with 15 hidden units was trained on a
small set of length-limited (max. 8 letters) grammatical strings. It was able
to use the small activation differences present over the context units - and
due to the slightly different sequences presented - to master contingencies
such as those illustrated above (see table 1).

Table 1. Activation of each output unit following the presentation
of 'Y' as the 6th or 7th letter in the string

tssxxV
tsssxxV

T
0.0
0.0

S P X
0.0 0.54 0.0
0.0 0.02 0.0

V E
0.48 0.0
0.97 0.0

A cluster analysis of all the patterns of activation on the hidden layer
generated by each letter in each sequence demonstrates how the influence of
the path is reflected in these patterns (see figure 3.B.)*. We labeled the arcs
according to the letter being presented (the 'current letter') and its position in
the grammar defined by Reber. Thus 'VI' refers to the f11'st 'V' in the
grammar and 'V2' to the second 'V' which immediately precedes the end of
the string. 'Early' and 'Late' refer to whether the letter occurred early or late
in the sequence (for example in 'PT . .' 'T2' occurs early; in 'PVPXT . .' it
occurs late). Finally, in the left margin we indicated what predictions the
corresponding patterns yield on the output layer (e.g, the hidden unit pattern
generated by 'BEGIN' predicts 'T' or 'P').

From the figure, it can be seen that the patterns are grouped according to
three distinct principles: (1) according to similar predictions, (2) according
to similar letters presented on the input units, and (3) according to similar
paths. These factors do not necessarily overlap since several occurrences of
the same letter in a sequence usually implies different predictions and since
similar paths also lead to different predictions depending on the current
letter. For example, the top cluster in the figure corresponds to all
occurrences of the letter 'V' and is further subdivided among 'V I' and 'V2"

* Information about the leaves of the cluster analyses in this and the remaining figures is
available in Servan-Schreiber. Cleeremans and McCleUand (1988).

648 Servan-Schreiber, Cleeremans and McClelland

The 'V l' cluster is itself further divided between groups where 'V l' occurs
early in the sequence (e.g, 'pV .. .') and groups where it occurs later (e.g,
'tssxxV .. .' and 'pvpxV .. .'). Note that the division according to the path
does not necessarily correspond to different predictions. For example, 'V 2'
always predicts 'END' and always with maximum certainty. Nevertheless,
sequences up to 'V 2' are divided according to the path traversed.

PHASES OF LEARNING

How can information about the path be progressively encoded in the hidden
layer patterns of activation? To clarify how the network learns to use the
context of preceding letters in a sequence, we will illustrate the different
phases of learning with cluster analyses of the hidden layer patterns
generated at each phase. To make the analyses simpler, we used a smaller
training set than the training set mentioned previously. The corresponding
finite-state grammar is shown in Figure 4. In this simpler grammar, the
main difference -- besides the reduced number of patterns -- is that the
letters 'P' and 'T' appear only once.

s

x
.11It --4IF-----~

----~Eu

T

Figure 4. The reduced rmite-state grammar from which 12
strings were generated for training

Discovering letters. At epoch 0, before the network has received any
training, the hidden unit patterns clearly show an organization by letter: to
each letter corresponds an individual cluster. These clusters are already
subdivided according to preceding sequences -- the 'path'. This fact
illustrates how a pattern of activation on the context units naturally tends to
encode the path traversed so far independently of any error correcting
procedure. The average distance between the different patterns -- the
'contrast' as it were -- is nonetheless rather small; the scale only goes up to
0.6 (see Figure 5.A.)**. But this is due to the very small initial random

** In all the following figures. the scaJe was automatically detennined by the cluster
analysis program. It is important to keep this in mind when comparing the figures to

. .

:

I

Learning Sequential Structure in Simple Recurrent Netw:,l.'" 649

Figure 5. Cluster Analyses of the H.U. aclivation pattmls obcained with the reduced
set of strings: A. before lraining. B. After 100 epochs of lraining. C. After 700 epochs

of training.

650 Servan-Schreiber, Cleeremans and McClelland

values of the weights from the input and context layers to the hidden layer.
Larger initial values would enhance the network's tendency to capture path
infonnation in the hidden unit patterns before training is even started

After 100 epochs of training, an organization by letters is still prevalent,
however letters have been regrouped according to similar predictions.
'START', 'P' and'S' all make the common prediction of 'X or S'
(although'S' also predicts 'END'); 'T' and 'V' make the common
prediction of 'V' (although 'V' also predicts 'END' and 'P'). The path
information has been almost eliminated: there is very little difference
between the patterns generated by two different occurrences of the same
letter (see Figure 5.B.). For example, the hidden layer pattern generated by
'S I' and the corresponding output pattern are almost identical to the patterns
generated by 'S2' (see table 2).

Table 2. Activation of each output unit fOllowing the
presentation of the flrst S in the grammar (SI)

or the second S (S2> after 100 epochs of training

SI
S2

T
0.0
0.0

S P
0.36 0.0
0.37 0.0

X
0.33
0.33

V E
0.16 0.17
0.16 0.17

In this phase, the network is learning to ignore the pattern of activation on
the context units and to produce an output pattern appropriate to the letter
'S' in any context. This is a direct consequence of the fact that the patterns
of activation on the hidden layer -- and hence the context layer -- are
continuously changing from one epoch to the next as the weights from the
input units (the letters) to the hidden layer are modified. Consequently,
adjustments made to the weights from the context layer to the hidden layer
are inconsistent from epoch to epoch and cancel each other. In contrast, the
network is able to pick up the stable association between each letter and all
of its possible successors.

Discovering arcs. At the end of this phase, individual letters consistently
generate a unique pattern of activation on the hidden layer. This is a crucial
step in developing a sensitivity to context: patterns copied onto the context
layer have become a unique code designating which letter immediately
preceded the current letter. The learning procedure can now exploit the
regular association between the pattern on the context layer and the desired
output. Around epoch 700, the cluster analysis shows that the network has
used this infonnation to differentiate clearly between the fust and second
occurrence of the same letter (Figure 5.C.). The pattern generated by 'S2' -­
which predicts 'END' -- clusters with the pattern generated by 'V2" which
also predicts 'END'. The overall difference between all the hidden layer
patterns has also more than roughly doubled, as indicated by the change in
scale.

Encoding the path. During the last phase of learning, the network learns
to make different predictions to the same occurrence of a letter (e.g, 'V I')

each other.

Learning Sequential Structure in Simple Recurrent Networks 651

on the basis of the previous sequence. For example, it learns to differentiate
between 'ssxxV' which predicts either 'P' or 'V', and 'sssxxV' which
predicts only 'V' by exploiting the small difference between the activation
patterns generated by X 2 in the two different contexts.

The process through which path information is encoded can be
conceptualized in the following way: As the initial papers about back­
propagation pointed out, the hidden unit patterns of activation represent an
'encoding' of the features of the input patterns that are relevant to the task.
In the recurrent network, the hidden layer is presented with information
about the current letter, but also -- on the context layer -- with an encoding
of the relevant features of the previous letter. Thus, a given hidden layer
pattern can come to encode information about the relevant features of two
consecutive letters. When this pattern is fed back on the context layer, the
new pattern of activation over the hidden units can come to encode
information about three consecutive letters, and so on. In this manner, the
context layer patterns can allow the network to maintain prediction-relevant
features of an entire sequence. However, it is important to note that
information about the path that is not relevant locally (Le, that does not
contribute to predicting successors of the current letter) tends not to be
encoded in the next hidden layer pattern. It may then be lost for subsequent
processing. This tendency is lessened when the network has extra degrees
of freedom -- i.e, extra hidden units -- so as to allow small and locally
useless differences to survive for several processing steps.

CONCLUSION

We have shown that the network architecture first proposed by Elman
(1988) is capable of mastering an infinite coIpus of strings generated from a
finite-state grammar after training on a finite set of exemplars with a learning
algorithm that is local in time. The network develops internal representations
that correspond to the nodes of the grammar and closely approximates the
corresponding minimal finite-state recognizer. We have also shown that the
simple recurrent network is able to encode information about contingencies
that are not local to a given letter and its immediate predecessor, such as
those implied by a length constraint on the strings. Encoding of sequential
structure in the patterns of activation over the hidden layers proceeds in
stages. The network first develops stable hidden-layer representations for
individual letters, and then for individual arcs in the grammar. Finally, the
network is able to exploit slight differences in the patterns of activation
which denote a specific path through the grammar. Our current work is
exploring the relevance of this architecture to the processing of embedded
sequences typical of natural language. The results of some preliminary
experiments are available in Servan-Schreiber, Cleeremans and McClelland
(1988).

652 Servan-Schreiber, Cleeremans and McClelland

References

Elman. J.L. (1988). Finding structure in time. CRL Technical report 9901. Center for
Research in Language. University of California. San Diego.

Reber. A.S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning
and Verbal Behavior. S. 855-863.

Rumelhart. D.E .• Hinton. G.E .• and Williams. R.I. (1986). Learning internal
representations by backpropagating errors. Nature 323:533-536.

Sejnowski. T J. and Rosenberg C. (1986). NETta1k: A parallel network that learns to read
aloud. Technical Report.lohns Hopkins University lHU-EECS-86-01.

Servan-Schreiber D. Cleeremans A. and McClelland JL (1988) Encoding sequential
structure in simple recurrent networks. Technical Report CMU-CS-88-183.
Computer Science Department. Carnegie Mellon University. Pittsburgh. PA
15213.

Williams. R.J. and Zipser. D. (1988). A learning algorithm for continually running fully
recurrent neural networks. ICS Technical report 8805. Institute for Cognitive
Science. UCSD. La lolla. CA 92093.

