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ABSTRACT 

We explore a network architecture introduced by Elman (1988) for 
predicting successive elements of a sequence. The network uses the 
pattern of activation over a set of hidden units from time-step t-l, 
together with element t, to predict element t+ 1. When the network is 
trained with strings from a particular finite-state grammar, it can learn 
to be a perfect finite-state recognizer for the grammar. Cluster analyses 
of the hidden-layer patterns of activation showed that they encode 
prediction-relevant information about the entire path traversed through 
the network. We illustrate the phases of learning with cluster analyses 
performed at different points during training. 

Several connectionist architectures that are explicitly constrained to capture 
sequential infonnation have been developed. Examples are Time Delay 
Networks (e.g. Sejnowski & Rosenberg. 1986) -- also called 'moving 
window' paradigms -- or algorithms such as back-propagation in time 
(Rumelhart. Hinton & Williams. 1986), Such architectures use explicit 
representations of several consecutive events. if not of the entire history of 
past inputs. Recently. Elman (1988) has introduced a simple recurrent 
network (SRN) that has the potential to master an infinite corpus of 
sequences with the limited means of a learning procedure that is completely 
local in time (see Figure I.). 

CONIlSrr UNI'l'S 

Figure 1. The simple recurrent network (Elman, 1988) 
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In the SRN. the pattern of activation on the hidden units at time t-I. 
together with the new input pattern. is allowed to influence the pattern of 
activation at time t . This is achieved by copying the pattern of activation on 
the hidden layer at time t·I to a set of input units -- called the 'context units' 
-- at time t. The forward connections in the network are subject to training 
via back-propagation. but there is no backpropagation through time. 

In this paper. we show that the SRN can learn to mimic closely a flnite state 
automaton. both in its behavior and in its state representations. In particular. 
we show that it can learn to process an infinite corpus of strings based on 
experience with afinite set of training exemplars. We then describe the 
phases through which the appropriate internal representations are discovered 
during training. 

MASTERING A FINITE STATE GRAMMAR 

In our first experiment. we asked whether the network could learn the 
contingencies implied by a small flnite state grammar (see Figure 2). The 
network was presented with strings derived from this grammar. and was 
required to try to predict the next letter at every step. These predictions are 
context dependent since each letter appears twice in the grammar and is 
followed in each case by different successors. 

A single unit on the input layer represented a given letter (six input units in 
total; flve for the letters and one for a begin symbol 'B'). Similar local 
representations were used on the output layer (with the 'begin' symbol 
being replaced by an end symbol 'E'). There were three hidden units. 

s 
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Figure 2. The small fmite-state grammar (Reber. 1967) 

Training. On each of 60.000 training trials. a string was generated from 
the grammar. starting with 'B'. Successive arcs were selected randomly 
from the 2 possible continuations with a probability of 0.5. Each letter was 
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then presented sequentially to the network. The activations of the context 
units were reset to 0.5 at the beginning of each string. After each letter, the 
error between the network's prediction and the actual successor specified 
by the string was computed and back-propagated. The 60,000 randomly 
generated strings ranged from 3 to 30 letters (mean: 7; sd: 3.3). 

Performance. Three tests were conducted. First, we examined the 
network's predictions on a set of 70,000 random strings. During this test, 
the network is first presented with the start signal, and one of the five letters 
or E is then selected at random as a successor. If that letter is predicted by 
the network as a legal successor (Le, activation is above 0.3 for the 
corresponding unit), it is then presented to the input layer on the next time 
step, and another letter is drawn at random as its successor. This procedure 
is repeated as long as each letter is predicted as a legal successor until the 
end signal is selected as the next letter. The procedure is interrupted as soon 
as the actual successor generated by the random procedure is not predicted 
by the network, and the string of letters is then considered 'rejected'. A 
string is considered 'accepted' if all its letters have been predicted as 
possible continuations up to, and including, the end signal. Of the 70,000 
random strings, 0.3 % were grammatical, and 99.7 % were ungrammatical. 
The network performed flawlessly, accepting all the grammatical strings and 
rejecting all the others. In a second test, we presented the network with 
20,000 generated at random from the grammar, i.e, all these strings were 
grammatical. Using the same criterion as above, all of these strings were 
correctly 'accepted'. Finally, we constructed a set of very long grammatical 
strings -- more than 100 letters long -- and verified that at each step the 
network correcdy predicted all the possible successors (activations above 
0.3) and none of the other letters in the grammar. 

Analysis of internal representations. What kind of internal representations 
have developed over the set of hidden units that allow the network to 
associate the proper predictions to intrinsically ambiguous letters? One way 
to answer this question is to record the hidden units' activation patterns 
generated in response to the presentation of individual letters in different 
contexts. These activation vectors can then be used as input to a cluster 
analysis program. Figure 3.A. shows the results of such an analysis 
conducted on a small random set of grammatical strings. The patterns of 
activation are grouped according to the nodes of the grammar: all the 
patterns that are used to predict the successors of a given node are grouped 
together independently of the current letter. This observation sheds some 
light on the behavior of the network: at each point in a sequence, the pattern 
of activation stored over the context units provides information about the 
current node in the grammar. Together with information about the current 
letter (represented on the input layer), this contextual information is used to 
produce a new pattern of activation over the hidden layer, that uniquely 
specifies the next node. In that sense, the network closely approximates the 
finite-state automaton that would encode the grammar from which the 
training exemplars were derived. However, a closer look at the cluster 
analysis reveals that within a cluster corresponding to a particular node, 
patterns are further divided according to the path traversed before the node 
is reached. For example, looking at the bottom cluster -- node #5 -- patterns 
produced by a 'VV', 'PS', 'XS' or 'SXS' ending are grouped separately: 
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Figure 3. A. Hieruchical cluster analysis of the hidden unit activation patternS after 
60.000 presentations of Slrings generated at random from the finite-Slate grammar. 

B. Cluster analysis of the H.U. activaDon pauans following 2000 epochs of 
1raining 011 a set of 22 strings with a maximum length of eightlettets. 
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they are more similar to each other than to the abstract prototype of node #5. 
This tendency to preserve information about the path is not a characteristic 
of traditional finite-state automata. 

ENCODING PATH INFORMATION 

In a different set of experiments, we asked whether the SRN could learn to 
use the infonnation about the path that is encoded in the hidden units' 
patterns of activation. In one of these experiments, we tested whether the 
network could master length constraints. When strings generated from the 
small finite-state grammar may only have a maximum of 8 letters, the 
prediction following the presentation of the same letter in position number 
six or seven may be different. For example, following the sequence 
'TSSSXXV', 'V' is the seventh letter and only another 'V' would be a legal 
successor. In contrast, following the sequence 'TSSXXV', both 'V' and 
'P' are legal successors. A network with 15 hidden units was trained on a 
small set of length-limited (max. 8 letters) grammatical strings. It was able 
to use the small activation differences present over the context units - and 
due to the slightly different sequences presented - to master contingencies 
such as those illustrated above (see table 1). 

Table 1. Activation of each output unit following the presentation 
of 'Y' as the 6th or 7th letter in the string 

tssxxV 
tsssxxV 

T 
0.0 
0.0 

S P X 
0.0 0.54 0.0 
0.0 0.02 0.0 

V E 
0.48 0.0 
0.97 0.0 

A cluster analysis of all the patterns of activation on the hidden layer 
generated by each letter in each sequence demonstrates how the influence of 
the path is reflected in these patterns (see figure 3.B.)*. We labeled the arcs 
according to the letter being presented (the 'current letter') and its position in 
the grammar defined by Reber. Thus 'VI' refers to the f11'st 'V' in the 
grammar and 'V2' to the second 'V' which immediately precedes the end of 
the string. 'Early' and 'Late' refer to whether the letter occurred early or late 
in the sequence (for example in 'PT . .' 'T2' occurs early; in 'PVPXT . .' it 
occurs late). Finally, in the left margin we indicated what predictions the 
corresponding patterns yield on the output layer (e.g, the hidden unit pattern 
generated by 'BEGIN' predicts 'T' or 'P'). 

From the figure, it can be seen that the patterns are grouped according to 
three distinct principles: (1) according to similar predictions, (2) according 
to similar letters presented on the input units, and (3) according to similar 
paths. These factors do not necessarily overlap since several occurrences of 
the same letter in a sequence usually implies different predictions and since 
similar paths also lead to different predictions depending on the current 
letter. For example, the top cluster in the figure corresponds to all 
occurrences of the letter 'V' and is further subdivided among 'V I' and 'V2" 

* Information about the leaves of the cluster analyses in this and the remaining figures is 
available in Servan-Schreiber. Cleeremans and McCleUand (1988). 
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The 'V l' cluster is itself further divided between groups where 'V l' occurs 
early in the sequence (e.g, 'pV .. .') and groups where it occurs later (e.g, 
'tssxxV .. .' and 'pvpxV .. .'). Note that the division according to the path 
does not necessarily correspond to different predictions. For example, 'V 2' 
always predicts 'END' and always with maximum certainty. Nevertheless, 
sequences up to 'V 2' are divided according to the path traversed. 

PHASES OF LEARNING 

How can information about the path be progressively encoded in the hidden 
layer patterns of activation? To clarify how the network learns to use the 
context of preceding letters in a sequence, we will illustrate the different 
phases of learning with cluster analyses of the hidden layer patterns 
generated at each phase. To make the analyses simpler, we used a smaller 
training set than the training set mentioned previously. The corresponding 
finite-state grammar is shown in Figure 4. In this simpler grammar, the 
main difference -- besides the reduced number of patterns -- is that the 
letters 'P' and 'T' appear only once. 
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Figure 4. The reduced rmite-state grammar from which 12 
strings were generated for training 

Discovering letters. At epoch 0, before the network has received any 
training, the hidden unit patterns clearly show an organization by letter: to 
each letter corresponds an individual cluster. These clusters are already 
subdivided according to preceding sequences -- the 'path'. This fact 
illustrates how a pattern of activation on the context units naturally tends to 
encode the path traversed so far independently of any error correcting 
procedure. The average distance between the different patterns -- the 
'contrast' as it were -- is nonetheless rather small; the scale only goes up to 
0.6 (see Figure 5.A.)**. But this is due to the very small initial random 

** In all the following figures. the scaJe was automatically detennined by the cluster 
analysis program. It is important to keep this in mind when comparing the figures to 
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Figure 5. Cluster Analyses of the H.U. aclivation pattmls obcained with the reduced 
set of strings: A. before lraining. B. After 100 epochs of lraining. C. After 700 epochs 

of training. 
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values of the weights from the input and context layers to the hidden layer. 
Larger initial values would enhance the network's tendency to capture path 
infonnation in the hidden unit patterns before training is even started 

After 100 epochs of training, an organization by letters is still prevalent, 
however letters have been regrouped according to similar predictions. 
'START', 'P' and'S' all make the common prediction of 'X or S' 
(although'S' also predicts 'END'); 'T' and 'V' make the common 
prediction of 'V' (although 'V' also predicts 'END' and 'P'). The path 
information has been almost eliminated: there is very little difference 
between the patterns generated by two different occurrences of the same 
letter (see Figure 5.B.). For example, the hidden layer pattern generated by 
'S I' and the corresponding output pattern are almost identical to the patterns 
generated by 'S2' (see table 2). 

Table 2. Activation of each output unit fOllowing the 
presentation of the flrst S in the grammar (SI) 

or the second S (S2> after 100 epochs of training 

SI 
S2 

T 
0.0 
0.0 

S P 
0.36 0.0 
0.37 0.0 

X 
0.33 
0.33 

V E 
0.16 0.17 
0.16 0.17 

In this phase, the network is learning to ignore the pattern of activation on 
the context units and to produce an output pattern appropriate to the letter 
'S' in any context. This is a direct consequence of the fact that the patterns 
of activation on the hidden layer -- and hence the context layer -- are 
continuously changing from one epoch to the next as the weights from the 
input units (the letters) to the hidden layer are modified. Consequently, 
adjustments made to the weights from the context layer to the hidden layer 
are inconsistent from epoch to epoch and cancel each other. In contrast, the 
network is able to pick up the stable association between each letter and all 
of its possible successors. 

Discovering arcs. At the end of this phase, individual letters consistently 
generate a unique pattern of activation on the hidden layer. This is a crucial 
step in developing a sensitivity to context: patterns copied onto the context 
layer have become a unique code designating which letter immediately 
preceded the current letter. The learning procedure can now exploit the 
regular association between the pattern on the context layer and the desired 
output. Around epoch 700, the cluster analysis shows that the network has 
used this infonnation to differentiate clearly between the fust and second 
occurrence of the same letter (Figure 5.C.). The pattern generated by 'S2' -­
which predicts 'END' -- clusters with the pattern generated by 'V2" which 
also predicts 'END'. The overall difference between all the hidden layer 
patterns has also more than roughly doubled, as indicated by the change in 
scale. 

Encoding the path. During the last phase of learning, the network learns 
to make different predictions to the same occurrence of a letter (e.g, 'V I') 

each other. 
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on the basis of the previous sequence. For example, it learns to differentiate 
between 'ssxxV' which predicts either 'P' or 'V', and 'sssxxV' which 
predicts only 'V' by exploiting the small difference between the activation 
patterns generated by X 2 in the two different contexts. 

The process through which path information is encoded can be 
conceptualized in the following way: As the initial papers about back­
propagation pointed out, the hidden unit patterns of activation represent an 
'encoding' of the features of the input patterns that are relevant to the task. 
In the recurrent network, the hidden layer is presented with information 
about the current letter, but also -- on the context layer -- with an encoding 
of the relevant features of the previous letter. Thus, a given hidden layer 
pattern can come to encode information about the relevant features of two 
consecutive letters. When this pattern is fed back on the context layer, the 
new pattern of activation over the hidden units can come to encode 
information about three consecutive letters, and so on. In this manner, the 
context layer patterns can allow the network to maintain prediction-relevant 
features of an entire sequence. However, it is important to note that 
information about the path that is not relevant locally (Le, that does not 
contribute to predicting successors of the current letter) tends not to be 
encoded in the next hidden layer pattern. It may then be lost for subsequent 
processing. This tendency is lessened when the network has extra degrees 
of freedom -- i.e, extra hidden units -- so as to allow small and locally 
useless differences to survive for several processing steps. 

CONCLUSION 

We have shown that the network architecture first proposed by Elman 
(1988) is capable of mastering an infinite coIpus of strings generated from a 
finite-state grammar after training on a finite set of exemplars with a learning 
algorithm that is local in time. The network develops internal representations 
that correspond to the nodes of the grammar and closely approximates the 
corresponding minimal finite-state recognizer. We have also shown that the 
simple recurrent network is able to encode information about contingencies 
that are not local to a given letter and its immediate predecessor, such as 
those implied by a length constraint on the strings. Encoding of sequential 
structure in the patterns of activation over the hidden layers proceeds in 
stages. The network first develops stable hidden-layer representations for 
individual letters, and then for individual arcs in the grammar. Finally, the 
network is able to exploit slight differences in the patterns of activation 
which denote a specific path through the grammar. Our current work is 
exploring the relevance of this architecture to the processing of embedded 
sequences typical of natural language. The results of some preliminary 
experiments are available in Servan-Schreiber, Cleeremans and McClelland 
(1988). 
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