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ABSTRACT 

Hardware implementation of neuromorphic algorithms is hampered by 
high degrees of connectivity. Functionally equivalent feedforward 
networks may be formed by using limited fan-in nodes and additional 
layers. but this complicates procedures for determining weight 
magnitudes. No direct mapping of weights exists between fully and 
limited-interconnect nets. Low-level nonlinearities prevent the 
formation of internal representations of widely separated spatial 
features and the use of gradient descent methods to minimize output 
error is hampered by error magnitude dissipation. The judicious use 
of linear summations or collection units is proposed as a solution. 

HARDWARE IMPLEMENTATIONS OF FEEDFORWARD, 
SYNTHETIC NEURAL SYSTEMS 

The pursuit of hardware implementations of artificial neural network models is motivated 
by the need to develop systems which are capable of executing neuromorphic algorithms 
in real time. The most significant barrier is the high degree of connectivity required 
between the processing elements. Current interconnect technology does not support the 
direct implementation of large-scale arrays of this type. In particular. the high 
fan-in/fan-outs of biology impose connectivity requirements such that the electronic 
implementation of a highly interconnected biological neural networks of just a few 
thousand neurons would require a level of connectivity which exceeds the current or even 
projected interconnection density ofULSI systems (Akers et al. 1988). 

Highly layered. limited-interconnected architectures are however. especially well suited for 
VLSI implementations. In previous works. we analyzed the generalization and 
fault-tolerance characteristics of a limited-interconnect perceptron architecture applied in 
three simple mappings between binary input space and binary output space and proposed a 
CMOS architecture (Akers and Walker. 1988). This paper concentrates on developing an 
understanding of the limitations on layered neural network architectures imposed by 
hardware implementation and a proposed solution. 
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TRAINING CONSIDERATIONS FOR 
LIMITED .. INTERCONNECT FEEDFORWARD NETWORKS 

The symbolic layout of the limited fan-in network is shown in Fig. 1. Re-arranging of 
the individual input components is done to eliminate edge effects. Greater detail on the 
actual hardware architecture may be found in (Akers and Walker, 1988) As in linear 
filters, the total number of connections which fan-in to a given processing element 
determines the degrees of freedom available for forming a hypersurface which implements 
the desired node output function (Widrow and Stearns, 1985). When processing elements 
with fixed, low fan-in are employed, the affects of reduced degrees of freedom must be 
considered in order to develop workable training methods which permit generalization of 
novel inputs. First. no direct or indirect relation exists between weight magnitudes 
obtained for a limited-interconnect, multilayered perceptron, and those obtained for the 
fully connected case. Networks of these types adapted with identical exemplar sets must 
therefore fonn completely different functions on the input space. Second, low-level 
nonlinearities prevent direct internal coding of widely separated spatial features in the 
input set. A related problem arises when hyperplane nonlinearities are used. Multiple 
hyperplanes required on a subset of input space are impossible when no two second level 
nodes address identical positions in the input space. Finally, adaptation methods like 
backpropagation which minimize output error with gradient descent are hindered since the 
magnitude of the error is dissipated as it back-propagates through large numbers of hidden 
layers. The appropriate placement of linear summation elements or collection units is a 
proposed solution. 
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Figure 1. Symbolic Layout of Limited-Interconnect Feedforward Architecture 
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COMPARISON OF WEIGHT VALVES IN FULLY 
CONNECTED AND LIMITED-INTERCONNECT NETWORKS 

Fully connected and limited-interconnect feedforward structures may be functionally 
equivalent by virtue of identical training sets, but nonlinear node discriminant functions 
in a fully-connected perceptron network are generally not equivalent to those in a 
limited-interconnect, multilayered network. This may be shown by comparing the Taylor 
series expansion of the discriminant functions in the vicinity of the threshold for both 
types and then equating terms of equivalent order. A simple limited-interconnect network 
is shown in Fig. 2. 
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Figure 2. Limited-Interconnect Feedforward Network 

A discriminant function with a fan-in of two may be represented with the following 
functional form, 

where e is the threshold and the function is assumed to be continuously differentiable. 
The Taylor series expansion of the discriminant is, 

Expanding output node three in Fig. 2 to second order, 

where fee), fee) and f'(e) are constant terms. Substituting similar expansions for Yl and 

Y2 into Y3 yields the expression, 
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The output node in the fully-connected case may also be expanded, 
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Figure 3. Fully Connected Network 

where 

Expanding to second order yields, 

We seek the necessary and sufficient conditions for the two nonlinear discriminant 
functions to be analytically equivalent. This is accomplished by comparing terms of 
equal order in the expansions of each output node in the two nets. Equating the constant 
terms yields, 

w =-w 5 6 

Equating the fIrst order terms, 

W =W = 1 
5 6 f(9) 

Equating the second order terms, 
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The ftrst two conditions are obviously contradictory. In addition, solving for w5 or w6 
using the ftrst and second constraints or the frrst and third constraints yields the trivial 
result, w5=w6=O. Thus, no relation exists between discriminant functions occurring in 
the limited and fully connected feedforward networks. This eliminates the possibility 
that weights obtained for a fully connected network could be transformed and used in a 
limited-interconnect structure. More signiftcant is the fact that full and limited 
interconnect nets which are adapted with identical sets of exemplars must form completely 
different functions on the input space, even though they exhibit identical output behavior. 
For this reason, it is anticipated that the two network types could produce different 
responses to a novel input. 

NON-OVERLAPPING INPUT SUBSETS 

Signal routing becomes important for networks in which hidden units do not address 
identical subsets in the proceeding layer. Figure 4 shows an odd-parity algorithm 
implemented with a limited-interconnect architecture. Large weight magnitudes are 
indicated by darker lines. Many nodes act as "pass-through" elements in that they have 
few dominant input and output connections. These node types are necessary to pass lower 
level signals to common aggregation points. In general, the use of limited fan-in 
processing elements implementing a nonlinear discriminant function decreases the 
probability that a given correlation within the input data will be encoded, especially if 
the "width" of the feature set is greater than the fan-in, requiring encoding at a high level 
within the net. In addition, since lower-level connections determine the magnitudes of 
upper level connections in any layered net when baclcpropagation is used, the set of points 
in weight space available to a limited-interconnect net for realizing a given function is 
further reduced by the greater number of weight dependencies occurring in 
limited-interconnect networks, all of which must be satisfted during training. Finally, 
since gradient descent is basically a shortcut through an NP-complete search in weight 
space, reduced redundancy and overlapping of internal representations reduces the 
probability of convergence to a near-optimal solution on the training set. 

DISSIPATION OF ERROR MAGNITUDE WITH 
INCREASING NUMBERS OF LAYERS 

Following the derivation of backpropagation in (plaut, 1986), the magnitude change for 
a weight connecting a processing element in the m-Iayer with a processing element in the 
I-layer is given by, 

where 
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Figure 4. Six-input odd parity function implemented with limited-interconnect 

then 

[ f [f [f dYa ] dy j ] dy 1 dy = ~ L··· L(ya-da) dx wb-a • "-d wk_, _k W ~ 
i..J '1 a=l a x, ) dx l-k dx m 
k=l J= ) k 1 

Where y is the output of the discriminant function, x is the activation level, w is a 
connection magnitude, and f is the fan-in for each processing element. If N layers of 
elements intervene between the m-layer and the output layer, then each of the f (N-l) 
tenns in the above summation consists of the product, 
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dy. 
) 

Wb •• '-d -a x 
j 

If we replace the weight magnitudes and the derivatives in each tenn with their mean 
values, 

The value of the first derivative of the sigmoid discriminant function is distributed 
between 0.0 and 0.5. The weight values are typically initially distrlbuted evenly between 
small positive and negative values. Thus with more layers. the product of the derivatives 
occurring in each tenn approaches zero. The use of large numbers of perceptron layers 
therefore has the affect of dissipating the magnitude of the error. This is exacerbated by 
the low fan-in, which reduces the total number of tenns in the summation. The use of 
linear collection units (McClelland. 1986), discussed in the following section, is a 
proposed solution to this problem. 

LINEAR COLLECTION UNITS 

As shown in Fig. 5, the output of the limited-interconnect net employing collection units 
is given by the function, 
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Figure S. Limited-interconnect network employing linear summations 

where c 1 and c2 are constants. The position of the summations may be determined by 

using euclidian k-means clustering on the exemplar set to a priori locate cluster centers 
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and determine their widths (Duda and Hart, 1973). The cluster members would be 
combined using linear elements until they reached a nonlinear discrminant, located higher 
in the net and at the cluster center. With this arrangement, weights obtained for a 
fully-connected net could be mapped using a linear transformation into the 
limited-interconnect network. Alternatively, backpropagation could be used since error 
dissipation would be reduced by setting the linear constant c of the summation elements 
to arbitrarily large values. 

CONCLUSIONS 

No direct transformation of weights exists between fully and limited interconnect nets 
which employ nonlinear discrmiminant functions. The use of gradient descent methods to 
minimize output error is hampered by error magnitude dissipation. In addition, low-level 
nonlinearities prevent the formation of internal representations of widely separated spatial 
features. The use of strategically placed linear summations or collection units is proposed 
as a means of overcoming difficulties in determining weight values in 
limited-interconnect perceptron architectures. K-means clustering is proposed as the 
method for determining placement. 
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