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Abstract 

A class of fast, supervised learning algorithms is presented. They use lo­
cal representations, hashing, atld multiple scales of resolution to approximate 
functions which are piece-wise continuous. Inspired by Albus's CMAC model, 
the algorithms learn orders of magnitude more rapidly than typical imple­
mentations of back propagation, while often achieving comparable qualities of 
generalization. Furthermore, unlike most traditional function approximation 
methods, the algorithms are well suited for use in real time adaptive signal 
processing. Unlike simpler adaptive systems, such as linear predictive cod­
ing, the adaptive linear combiner, and the Kalman filter, the new algorithms 
are capable of efficiently capturing the structure of complicated non-linear 
systems. As an illustration, the algorithm is applied to the prediction of a 
chaotic timeseries. 

1 Introduction 

A variety of approaches to adaptive information processing have been developed 
by workers in disparate disciplines. These include the large body of literature on 
approximation and interpolation techniques (curve and surface fitting), the linear, 
real-time adaptive signal processing systems (such as the adaptive linear combiner 
and the Kalman filter), and most recently, the reincarnation of non-linear neural 
network models such as the multilayer perceptron. 

Each of these methods has its strengths and weaknesses. The curve and surface 
fitting techniques are excellent for off-line data analysis, but are typically not formu­
lated with real-time applications in mind. The linear techniques of adaptive signal 
processing and adaptive control are well-characterized, but are limited to applica­
tions for which linear descriptions are appropriate. Finally, neural network learning 
models such as back propagation have proven extremely versatile at learning a wide 
variety of non-linear mappings, but tend to be very slow computationally and are 
not yet well characterized. 

The purpose of this paper is to present a general description of a class of su­
pervised learning algorithms which combine the ability of the conventional curve 
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fitting and multilayer perceptron methods to precisely learn non-linear mappings 
with the speed and flexibility required for real-time adaptive application domains. 

The algorithms are inspired by a simple, but often overlooked, neural network 
model, Albus's Cerebellar Model Articulation Controller (CMAC) [2,1], and have 
a great deal in common with the standard techniques of interpolation and approx­
imation. The algorithms "learn from examples", generalize well, and can perform 
efficiently in real time. Furthermore, they overcome the problems of precision and 
generalization which limit the standard CMAC model, while retaining the CMAC's 
speed. 

2 System Description 

The systems are designed to rapidly approximate mappings g: X 1-+ fi from multi­
dimensional input spaces x E Sinput to multidimensional output spaces fi E Soutput. 

The algorithms can be applied to any problem domain for which a metric can be de­
fined on the input space (typically the Euclidean, Hamming, or Manhattan metric) 
and for which the desired learned mapping is (to a close approximation) piece-wise 
continuous. (Discontinuities in the desired mapping, such as those at classifica­
tion boundaries, are approximated continuously.) Important general classes of such 
problems include approximation of real-valued functions nn 1-+ nm (such as those 
found in signal processing), classification problems nn 1-+ f3"l (such as phoneme 
classification), and boolean mapping problems Bn 1-+ f3"l (such as the NETtalk 
problem [20]). Here, n are the reals and B is {0,1}. This paper focuses on real­
valued mappings; the formulation and application of the algorithms to boolean 
problem domains will be presented elsewhere. 

In order to specify the complete learning system in detail, it is easiest to start 
with simple special cases and build the description from the bottom up: 

2.1 A Simple Adaptive Module 

The simplest special case of the general class under consideration is described as 
follows. The input space is overlayed with a lattice of points xf3 a local function 
value or "weight" Vf3 is assigned to every possible lattice point. The output of the 
system for a given input is: 

(1) 

where Nf3(x) is a neighborhood function for the 13th lattice point such that Nf3 = 1 
if xf3 is the lattice point closest to the input vector x and Nf3 = 0 otherwise. 

More generally, the neighborhood functions N can overlap and the sum in equa­
tion (1) can be replaced by an average. This results in a greater ability to generalize 
when training data is sparse, but at the cost of losing fine detail. 
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Learning is accomplished by varying the V{3 to minimize the squared error of 
the system output on a set of training data: 

E = ~ ~(Zide8ired - zeXi))2 , (2) 
I 

where the sum is over all exemplars {Xi, Zide'ired} in the training set. The de­
termination of V{3 is easily formulated as a real time adaptive algorithm by using 
gradient descent to minimize an instantaneous estimate E(t) of the error: 

dV dE(t) 
dt = -fJdV . (3) 

2.2 Saving Memory with Hashing: The CMAC 

The approach of the previous section encounters serious difficulty when the dimen­
sion of the input space becomes large and the distribution of data in the input space 
becomes highly non-uniform. In such cases, allocating a separate function value for 
each possible lattice point is extremely wasteful, because the majority of lattice 
points will have no training data within a local neighborhood. 

As an example, suppose that the input space is four dimensional, but that all 
input data lies on a fuzzy two dimensional subspace. (Such a situation [projected 
onto 3-dimensions] is shown in figure [2A].) Furthermore, suppose that the input 
space is overlayed with a rectangular lattice with K nodes per dimension. The 
complete lattice will contain K4 nodes, but only O( K2) of those nodes will have 
training data in their local neighborhoods Thus, only 0(K2) of the weights V{3 will 
have any meaning. The remaining 0(1(4) weights will be wasted. (This assumes 
that the lattice is not too fine. If K is too large, then only O(P) of the lattice points 
will have training data nearby, where P is the number of training data.) 

An alternative approach is to have only a small number of weights and to allo­
cate them to only those regions of the input space which are populated with training 
data. This allocation can be accomplished by a dimensionality-reducing mapping 
from a virtual lattice in the input space onto a lookup table of weights or function 
values. In the absence of any a priori information about the distribution of data in 
the input space, the optimal mapping is a random mapping, for example a universal 
hashing function [8]. The random nature of such a function insures that neighbor­
hood relationships in the virtual lattice are not preserved. The average behavior 
of an ensemble of universal hashing functions is thus to access all elements of the 
lookup table with equal probability, regardless of the correlations in the input data. 

The many-to-one hash function can be represented here as a matrix HT{3 of D's 
and 1 's with one 1 per column, but many 1 's per row. With this notation, the 
system response function is: 

T N 
zeX) = L L VT H T {3 N{3(x) (4) 

T=l{3=l 
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Figure 1: (A) A simple CMAC module. (B) The computation of errors for a multi­
resolution hierarchy. 

The CMAC model of Albus is obtained when a distributed representation of 
the input space is used and the neighborhood functions NP(x) are overlapping. 
In this case, the sum over (3 is replaced by an average. Note that, as specified 
by equation (4), hash table collisions are not resolved. This introduces "collision 
noise", but the effect of this noise is reduced by 1/ .j(B), where B is the number 
of neighborhood functions which respond to a given input. Collision noise can be 
completely eliminated if standard collision resolution techniques are used. 

A few comments should be made about efficiency. In spite of the costly formal 
sums in equation (4), actual implementations of the algorithm are extremely fast. 
The set of non-zero NP (X) on the virtual lattice, the hash function value for each 
vertex, and the set of corresponding lookup table values ih given by the hash 
function are easily determined on the fly. The entire hash function H T f3 is never 
pre-computed, the sum over the index (3 is limit.ed to a few lattice points neighboring 
the input X, and since each lattice point is associated with only one lookup table 
value, the formal sum over T disappears. 

The CMAC model is shown schematically in figure [IA). 

2.3 Interpolation: Neighborhood Functions with Graded 
Response 

One serious problem with the formulations discussed so far is that the neighborhood 
functions are constant in their regions of support. Thus, the system response is dis­
continuous over neighborhood boundaries. This problem can be easily remedied by 
using neighborhood functions with graded response in order to perform continuous 
interpolation between lattice points . 
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The normalized system response function is then: 

(5) 

The functions Rf3 (i) are the graded neighborhood response functions associated 
with each lattice point if3. They are intended to have local support on the" input 
space Sinput, thus being non-zero only in a local neighborhood of their associated 
lattice point Xf3. Each function Rf3(x) attains its maximum value at lattice point 
i f3 and drops off monotonically to zero as the distance lIif3 - Xli increases. Note 
that R is not necessarily isotropic or symmetric. 

Certain classes of localized response functions R defined on certain lattices are 
self-normalized, meaning that: 

L Rf3(X) = 1 , for any x. 
f3 

In this case, the equation (5) simplifies to: 

Z(x) = L L: liT H Tf3 Rf3(X) 
T f3 

(6) 

(7) 

One particularly important and useful class of of response functions are the B­
splines. However, it is not easy to formulate B-splines on arbitrary lattices in high 
dimensional spaces. 

2.4 M uIti-Resolution Interpolation 

The final limitation of the methods described so far is that they use a lattice at 
only one scale of resolution. Without detailed a priori knowledge of the distribu­
tion of data in the input space, it is difficult to choose an optimal lattice spacing. 
Furthermore, there is almost always a trade-off between the ability to generalize 
and the ability to capture fine detail. When a single coarse resolution is used, gen­
eralization is good, but fine details are lost. When a single fine resolution is used, 
fine details are captured in those regions which contain dense data, but no general 
picture emerges for those regions in which data is sparse. 

Good generalization and fine detail can both be captured by using a multi­
resolution hierarchy. 

A hierarchical system with L levels represents functions 9 : i 1-+ yin the follow-
mg way: 

L 

y(X) = Yi.(x) = L: %A (E) , (8) 
~=l 

where %A is a mapping as described in equation(5) for the A-th level in the hierarchy. 
The coarsest scale is A = 1 and the finest is A = L. 
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The multi-resolution system is trained such that the finer scales learn corrections 
to the total output of the coarser scales. This is accomplished by using a hierarchy 
of error functions. For each level in the hierarchy A, the output for that level fh, is 
defined to be the partial sum 

~ 

Y>. = 2: Zit . 

/C=} 

(Note that Y)..+l = Y>.. + z~+}.) The error for level A is defined to be 

E).. = 2: E)..(i) , 
i 

where the error associated with the ith exemplar is: 

E (.) 1 (-del .. ( .. ))2 
~ , ="2 Yi - Y~ Xi 

The learning or training procedure for level A involves varying the lookup table 
values V; for that level to minimize E)... Note that the lookup table values V; 
for previous or subsequent levels (Ie 1= A) are held fixed during the minimization 
of E)... Thus, the lookup table values for each level are varied to minimize only 
the error defined for that level. This hierarchical learning procedure guarantees 
that the first level mapping Zl is the best possible at that level, the second level 
mapping Z2 constitutes the best possible corrections to the first level, and the A-th 
level mapping Z~ constitutes the best possible corrections to the total contributions 
of all previous levels. The computation of error signals is shown schematically in 
figure [lB]. 

It should be noted that multi-resolution approaches have been successfully used 
in other contexts. Examples are the well-known multigrid methods for solving 
differential equations and the pyramid architectures used in machine vision [6,7]. 

3 Application to Timeseries Prediction 

The multi-resolution hierarchy can be applied to a wide variety of problem domains 
as mentioned earlier. Due to space limitations, we consider only one test problem 
here, the prediction of a chaotic timeseries. 

As it is usually formulated, the prediction is accomplished by finding a real­
valued mapping f : nn 1-+ n which takes a sequence of n recent samples of the 
timeseries and predicts the value at a future moment. Typically, the state space 
imbedding in nn is i{t] = (x[t], x[t - ~], x[t - 2~], x[t - 3~)), where ~ is the 
sampling parameter, and the correct prediction for prediction time T is x[t + T). 
For the purposes of testing various non-parametric prediction methods, it is assumed 
that the underlying process which generates the timeseries is unknown. 

The particular timeseries studied here results from integrating the Mackey-Glass 
differential-delay equation [14]: 

dx[t] = -b x[t] + a x[t - r] (9) 
dt 1 + x[t - r)1o 
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Figure 2: (A) Imbedding in three dimensions of 1000 successive points of the 
Mackey-Glass chaotic timeseries with delay parameter T = 17 and sampling pa­
rameter ~ = 6. (B) Normalized Prediction Error vs. Number of Training Data. 
Squares are runs with the multi-resolution hierarchy runs. The circle is the back 
propagation benchmark. The horizontal line is included for visual reference only 
and is not intended to imply a scaling law for back propagation. 

The solid lines in figure [3] show the resulting timeseries for T = 17, a = 0.2, 
and b = 0.1; note that it is cyclic, but not periodic. The characteristic time of 
the series, given by the inverse of the mean of the power spectrum, is tcha,. ~ 
50. Classical techniques like linear predictive coding and Gabor-Volterra-Wiener 
polynomial expansions typically do no better than chance when predicting beyond 
tcha,. [10]. 

For purposes of comparison, the sampling parameter and prediction time are 
chosen to be ~ = 6 and T = 85 > tcha,. respectively. Figure [2A] shows a projection 
of the four dimensional state space imbedding onto three dimensions. The orbits of 
the series lie on a fuzzy two dimensional subspace which is a strange attractor of 
fractal dimension 2.1. 

This problem has been studied by both conventional data analysis techniques 
and by neural network methods. 

It was first studied by Farmer and Sidorowich who locally fitted linear and 
quadratic surfaces directly to the data. [11,10]. The exemplars in the imbedding 
space were stored in a k-d tree structure in order to allow rapid determination of 
proximity relationships [3,4,19]. The local surface fitting method is extremely ef­
ficient computationally. This kind of approach has found wide application in the 
statistics community [5]. Casdagli has applied the method of radial basis functions, 
which is an exact interpolation method and also depends on explicit storage of the 
data. [9]. The radial basis functions method is a global method and becomes com-
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putationally expensive when the number of exemplars is large, growing as O(P3). 
Both approaches yield excellent results when used as off-line algorithms, but do not 
seem to be well suited to real-time application domains. 

For real-time applications, little a priori knowledge about the data can be as­
sumed, large amounts of past data can't be stored, the function being learned may 
vary with time, and computing speed is essential. 

Three different neural network techniques have been applied to the timeseries 
prediction problem, back propagation [13], self-organized, locally-tuned processing 
units [18,17], and an approach based on the GMDH method and simulated an­
nealing [21]. The first two approaches can in principle be applied in real time, 
because they don't require explicit storage of past data and can adapt continuously. 
Back propagation yields better predictions since it is completely supervised, but 
the locally-tuned processing units learn substantially faster. The GMDH approach 
yields excellent results, but is computationally intensive and is probably limited to 
off-line use. 

The multi-resolution hierarchy is intended to offer speed, precision, and the 
ability to adapt continuously in real time. Its application to the Mackey-Glass 
prediction problem is demonstrated in two different modes of operation: off-line 
learning and real-time learning. 

3.1 Off-Line Learning 

In off-line mode, a five level hierarchy was trained to predict the future values. At 
each level, a regular rectangular lattice was used, with each lattice having A intervals 
and therefore A + 1 nodes per dimension. The lattice resolutions were chosen to 
be (AI = 4, A2 = 8, A3 = 16, A4 = 32, As = 64). The corresponding number of 
vertices in each ofthe virtual4-dimensionallattices was therefore (Ml = 625, M2 = 
6,561, M3 = 83,521, M4 = 1,185,921, Ms = 17,850,625). The corresponding 
lookup table sizes were (TI = 625, T2 = 4096, T3 = 4096, T4 = 4096, Ts = 4096). 
Note that TI = M 1, so hashing was not required for the first layer. For all other 
layers, T>. < M>., so hashing was used. For layers 3, 4, and 5, T>. <: M>., so 
hashing resulted in a dramatic reduction in the memory required. The neighborhood 
response function RI3(E) was a B-spline with support in the 16 cells adjacent to each 
lattice point EI3. Hash table collisions were not resolved. 

The learning method used was simple gradient descent. The lookup table values 
were updated after the presentation of each exemplar. At each level, the training 
set was presented repeatedly until a convergence criterion was satisfied. The levels 
were trained sequentially: level 1 was trained until it converged, followed by level 
2, and so on. 

The performance of the system as a function of training set size is shown in fig­
ure [2B]. The normalized error is defined as [rms error]/[O'], where 0' is the standard 
deviation of the timeseries. For each run, a different segment of the timeseries was 
used. In all cases, the performance was measured on an independent test sequence 
consisting of the 500 exemplars immediately following the training sequence. The 
prediction error initially drops rapidly as the number of training data are increased, 
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but then begins to level out. This leveling out is most likely caused by collision 
noise in the hash tables. Collision resolution techniques should improve the results, 
but have not yet been implemented. 

For training sets with 500 exemplars, the multi-resolution hierarchy achieved 
prediction accuracy equivalent to that of a back propagation network trained by 
Lapedes and Farber [13]. Their network had four linear inputs, one linear output, 
and two internal layers, each containing 20 sigmoidal units. The layers were fully 
connected yielding 541 adjustable parameters (weights and thresholds) total. They 
trained their network in off-line mode using conjugate gradient, which they found 
to be significantly faster than gradient descent. 

The multi-resolution hierarchy converged in about 3.5 minutes on a Sun 3/60 for 
the 500 exemplar runs. Lapedes estimates that the back propagation network re­
quired probably 5 to 10 minutes ofCray X/MP time running at about 90 Mflops [12]. 
This would correspond to about 4, 000 to 8, 000 minutes of Sun 3/60 time. Hence, 
the multi-resolution hierarchy converged about three orders of magnitude faster that 
the back propagation network. This comparison should not be taken to be univer­
sal, since many implementations of both back propagation and the multi-resolution 
hierarchy are possible. Other comparisons could easily vary by factors of ten or 
more. 

It is interesting to note that the training time for the multi-resolution hierarchy 
increased sub-linearly with training set size. This is because the lookup table values 
were varied after the presentation of each exemplar, not after presentation of the 
whole set. A similar effect should be observable in back propagation nets. In fact, 
training after the presentation of each exemplar could very likely increase the overall 
rate of convergence for a back propagation net. 

3.2 Real-Time Learning 

Unlike most standard curve and surface fitting methods, the multi-resolution hi­
erarchy is extremely well-suited for real-time applications. Indeed, the standard 
CMAC model has been applied to the real-time control of robots with encouraging 
success [16,15]. 

Figure [3] illustrates a two level hierarchy (with 5 and 9 nodes per dimension) 
learning to predict the timeseries for T = 50 from an initial tabula rasa configuration 
(all lookup table values set to zero). The solid line is the actual timeseries data, while 
the dashed line are the predicted values. The predicted values lead the actual values 
in the graphs. Notice that the system discovers the intrinsically cyclic nature of the 
series almost immediately. At the end of a single pass through 9,900 exemplars, 
the normalized prediction error is below 5% and the fit looks very good to the eye. 

On a Sun 3/50, the algorithm required 1.4 msec per level to respond to and 
learn from each exemplar. At this rate, the two level system was able to process 
360 exemplars (over 7 cycles of the timeseries) per second. This rate would be 
considered phenomenal for a typical back propagation network running on a Sun 
3/50. 
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Figure 3: An example of learning to predict the Mackey-Glass chaotic timeseries in 
real time with a two-stage multi-resolution hierarchy. 

4 Discussion 

There are two reasons that the multi-resolution hierarchy learns much more quickly 
than back propagation. The first is that the hierarchy uses local representations 
of the input space and thus requires evaluation and modification of only a few 
lookup table values for each exemplar. In contrast, the complete back propagation 
net must be evaluated and modified for each exemplar. Second, the learning in 
the multi-resolution hierarchy is cast as a purely quadratic optimization procedure. 
In contrast, the back propagation procedure is non-linear and is plagued with a 
multitude of local minima and plateaus which can significantly retard the learning 
process. 

In these respects, the multi-resolution hierarchy is very similar to the local sur­
face fitting techniques exploited by Farmer and Sidorowich. The primary difference, 
however, is that the hierarchy, with its multi-resolution architecture and hash table 
data structures offers the flexibility needed for real time problem domains and does 
not require the explicit storage of past data or the creation of data structures which 
depend on the distribution of data. 
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