
"FAST LEARNING IN
MULTI-RESOLUTION HIERARCHIES"

John Moody
Yale Computer Science, P.O. Box 2158, New Haven, CT 06520

Abstract

A class of fast, supervised learning algorithms is presented. They use lo­
cal representations, hashing, atld multiple scales of resolution to approximate
functions which are piece-wise continuous. Inspired by Albus's CMAC model,
the algorithms learn orders of magnitude more rapidly than typical imple­
mentations of back propagation, while often achieving comparable qualities of
generalization. Furthermore, unlike most traditional function approximation
methods, the algorithms are well suited for use in real time adaptive signal
processing. Unlike simpler adaptive systems, such as linear predictive cod­
ing, the adaptive linear combiner, and the Kalman filter, the new algorithms
are capable of efficiently capturing the structure of complicated non-linear
systems. As an illustration, the algorithm is applied to the prediction of a
chaotic timeseries.

1 Introduction

A variety of approaches to adaptive information processing have been developed
by workers in disparate disciplines. These include the large body of literature on
approximation and interpolation techniques (curve and surface fitting), the linear,
real-time adaptive signal processing systems (such as the adaptive linear combiner
and the Kalman filter), and most recently, the reincarnation of non-linear neural
network models such as the multilayer perceptron.

Each of these methods has its strengths and weaknesses. The curve and surface
fitting techniques are excellent for off-line data analysis, but are typically not formu­
lated with real-time applications in mind. The linear techniques of adaptive signal
processing and adaptive control are well-characterized, but are limited to applica­
tions for which linear descriptions are appropriate. Finally, neural network learning
models such as back propagation have proven extremely versatile at learning a wide
variety of non-linear mappings, but tend to be very slow computationally and are
not yet well characterized.

The purpose of this paper is to present a general description of a class of su­
pervised learning algorithms which combine the ability of the conventional curve

29

30 Moody

fitting and multilayer perceptron methods to precisely learn non-linear mappings
with the speed and flexibility required for real-time adaptive application domains.

The algorithms are inspired by a simple, but often overlooked, neural network
model, Albus's Cerebellar Model Articulation Controller (CMAC) [2,1], and have
a great deal in common with the standard techniques of interpolation and approx­
imation. The algorithms "learn from examples", generalize well, and can perform
efficiently in real time. Furthermore, they overcome the problems of precision and
generalization which limit the standard CMAC model, while retaining the CMAC's
speed.

2 System Description

The systems are designed to rapidly approximate mappings g: X 1-+ fi from multi­
dimensional input spaces x E Sinput to multidimensional output spaces fi E Soutput.

The algorithms can be applied to any problem domain for which a metric can be de­
fined on the input space (typically the Euclidean, Hamming, or Manhattan metric)
and for which the desired learned mapping is (to a close approximation) piece-wise
continuous. (Discontinuities in the desired mapping, such as those at classifica­
tion boundaries, are approximated continuously.) Important general classes of such
problems include approximation of real-valued functions nn 1-+ nm (such as those
found in signal processing), classification problems nn 1-+ f3"l (such as phoneme
classification), and boolean mapping problems Bn 1-+ f3"l (such as the NETtalk
problem [20]). Here, n are the reals and B is {0,1}. This paper focuses on real­
valued mappings; the formulation and application of the algorithms to boolean
problem domains will be presented elsewhere.

In order to specify the complete learning system in detail, it is easiest to start
with simple special cases and build the description from the bottom up:

2.1 A Simple Adaptive Module

The simplest special case of the general class under consideration is described as
follows. The input space is overlayed with a lattice of points xf3 a local function
value or "weight" Vf3 is assigned to every possible lattice point. The output of the
system for a given input is:

(1)

where Nf3(x) is a neighborhood function for the 13th lattice point such that Nf3 = 1
if xf3 is the lattice point closest to the input vector x and Nf3 = 0 otherwise.

More generally, the neighborhood functions N can overlap and the sum in equa­
tion (1) can be replaced by an average. This results in a greater ability to generalize
when training data is sparse, but at the cost of losing fine detail.

"Fast Learning in Multi-Resolution Hierarchies" 31

Learning is accomplished by varying the V{3 to minimize the squared error of
the system output on a set of training data:

E = ~ ~(Zide8ired - zeXi))2 , (2)
I

where the sum is over all exemplars {Xi, Zide'ired} in the training set. The de­
termination of V{3 is easily formulated as a real time adaptive algorithm by using
gradient descent to minimize an instantaneous estimate E(t) of the error:

dV dE(t)
dt = -fJdV . (3)

2.2 Saving Memory with Hashing: The CMAC

The approach of the previous section encounters serious difficulty when the dimen­
sion of the input space becomes large and the distribution of data in the input space
becomes highly non-uniform. In such cases, allocating a separate function value for
each possible lattice point is extremely wasteful, because the majority of lattice
points will have no training data within a local neighborhood.

As an example, suppose that the input space is four dimensional, but that all
input data lies on a fuzzy two dimensional subspace. (Such a situation [projected
onto 3-dimensions] is shown in figure [2A].) Furthermore, suppose that the input
space is overlayed with a rectangular lattice with K nodes per dimension. The
complete lattice will contain K4 nodes, but only O(K2) of those nodes will have
training data in their local neighborhoods Thus, only 0(K2) of the weights V{3 will
have any meaning. The remaining 0(1(4) weights will be wasted. (This assumes
that the lattice is not too fine. If K is too large, then only O(P) of the lattice points
will have training data nearby, where P is the number of training data.)

An alternative approach is to have only a small number of weights and to allo­
cate them to only those regions of the input space which are populated with training
data. This allocation can be accomplished by a dimensionality-reducing mapping
from a virtual lattice in the input space onto a lookup table of weights or function
values. In the absence of any a priori information about the distribution of data in
the input space, the optimal mapping is a random mapping, for example a universal
hashing function [8]. The random nature of such a function insures that neighbor­
hood relationships in the virtual lattice are not preserved. The average behavior
of an ensemble of universal hashing functions is thus to access all elements of the
lookup table with equal probability, regardless of the correlations in the input data.

The many-to-one hash function can be represented here as a matrix HT{3 of D's
and 1 's with one 1 per column, but many 1 's per row. With this notation, the
system response function is:

T N
zeX) = L L VT H T {3 N{3(x) (4)

T=l{3=l

32 Moody

CTID --~" Resolution
1 I---.--I.,c,

Resolution
2 ~M"·l-I.,c,

A Hash Table

Figure 1: (A) A simple CMAC module. (B) The computation of errors for a multi­
resolution hierarchy.

The CMAC model of Albus is obtained when a distributed representation of
the input space is used and the neighborhood functions NP(x) are overlapping.
In this case, the sum over (3 is replaced by an average. Note that, as specified
by equation (4), hash table collisions are not resolved. This introduces "collision
noise", but the effect of this noise is reduced by 1/ .j(B), where B is the number
of neighborhood functions which respond to a given input. Collision noise can be
completely eliminated if standard collision resolution techniques are used.

A few comments should be made about efficiency. In spite of the costly formal
sums in equation (4), actual implementations of the algorithm are extremely fast.
The set of non-zero NP (X) on the virtual lattice, the hash function value for each
vertex, and the set of corresponding lookup table values ih given by the hash
function are easily determined on the fly. The entire hash function H T f3 is never
pre-computed, the sum over the index (3 is limit.ed to a few lattice points neighboring
the input X, and since each lattice point is associated with only one lookup table
value, the formal sum over T disappears.

The CMAC model is shown schematically in figure [IA).

2.3 Interpolation: Neighborhood Functions with Graded
Response

One serious problem with the formulations discussed so far is that the neighborhood
functions are constant in their regions of support. Thus, the system response is dis­
continuous over neighborhood boundaries. This problem can be easily remedied by
using neighborhood functions with graded response in order to perform continuous
interpolation between lattice points .

"Fast Learning in Multi-Resolution Hierarchies" 33

The normalized system response function is then:

(5)

The functions Rf3 (i) are the graded neighborhood response functions associated
with each lattice point if3. They are intended to have local support on the" input
space Sinput, thus being non-zero only in a local neighborhood of their associated
lattice point Xf3. Each function Rf3(x) attains its maximum value at lattice point
i f3 and drops off monotonically to zero as the distance lIif3 - Xli increases. Note
that R is not necessarily isotropic or symmetric.

Certain classes of localized response functions R defined on certain lattices are
self-normalized, meaning that:

L Rf3(X) = 1 , for any x.
f3

In this case, the equation (5) simplifies to:

Z(x) = L L: liT H Tf3 Rf3(X)
T f3

(6)

(7)

One particularly important and useful class of of response functions are the B­
splines. However, it is not easy to formulate B-splines on arbitrary lattices in high
dimensional spaces.

2.4 M uIti-Resolution Interpolation

The final limitation of the methods described so far is that they use a lattice at
only one scale of resolution. Without detailed a priori knowledge of the distribu­
tion of data in the input space, it is difficult to choose an optimal lattice spacing.
Furthermore, there is almost always a trade-off between the ability to generalize
and the ability to capture fine detail. When a single coarse resolution is used, gen­
eralization is good, but fine details are lost. When a single fine resolution is used,
fine details are captured in those regions which contain dense data, but no general
picture emerges for those regions in which data is sparse.

Good generalization and fine detail can both be captured by using a multi­
resolution hierarchy.

A hierarchical system with L levels represents functions 9 : i 1-+ yin the follow-
mg way:

L

y(X) = Yi.(x) = L: %A (E) , (8)
~=l

where %A is a mapping as described in equation(5) for the A-th level in the hierarchy.
The coarsest scale is A = 1 and the finest is A = L.

34 Moody

The multi-resolution system is trained such that the finer scales learn corrections
to the total output of the coarser scales. This is accomplished by using a hierarchy
of error functions. For each level in the hierarchy A, the output for that level fh, is
defined to be the partial sum

~

Y>. = 2: Zit .

/C=}

(Note that Y)..+l = Y>.. + z~+}.) The error for level A is defined to be

E).. = 2: E)..(i) ,
i

where the error associated with the ith exemplar is:

E (.) 1 (-del .. (..))2
~ , ="2 Yi - Y~ Xi

The learning or training procedure for level A involves varying the lookup table
values V; for that level to minimize E)... Note that the lookup table values V;
for previous or subsequent levels (Ie 1= A) are held fixed during the minimization
of E)... Thus, the lookup table values for each level are varied to minimize only
the error defined for that level. This hierarchical learning procedure guarantees
that the first level mapping Zl is the best possible at that level, the second level
mapping Z2 constitutes the best possible corrections to the first level, and the A-th
level mapping Z~ constitutes the best possible corrections to the total contributions
of all previous levels. The computation of error signals is shown schematically in
figure [lB].

It should be noted that multi-resolution approaches have been successfully used
in other contexts. Examples are the well-known multigrid methods for solving
differential equations and the pyramid architectures used in machine vision [6,7].

3 Application to Timeseries Prediction

The multi-resolution hierarchy can be applied to a wide variety of problem domains
as mentioned earlier. Due to space limitations, we consider only one test problem
here, the prediction of a chaotic timeseries.

As it is usually formulated, the prediction is accomplished by finding a real­
valued mapping f : nn 1-+ n which takes a sequence of n recent samples of the
timeseries and predicts the value at a future moment. Typically, the state space
imbedding in nn is i{t] = (x[t], x[t - ~], x[t - 2~], x[t - 3~)), where ~ is the
sampling parameter, and the correct prediction for prediction time T is x[t + T).
For the purposes of testing various non-parametric prediction methods, it is assumed
that the underlying process which generates the timeseries is unknown.

The particular timeseries studied here results from integrating the Mackey-Glass
differential-delay equation [14]:

dx[t] = -b x[t] + a x[t - r] (9)
dt 1 + x[t - r)1o

.(II
. ' ..

•• ' ,a

'(O)

'. ,' : .. .' ..

"Fast Learning in Multi-Resolution HierarchieS- 35

0.0

-0.5
S -

-1.5

•
• •

• ---- --------•• •

2.0 2.5

• • • • • •
3.0 3.5 4.0

Num. Data (log 10)

Figure 2: (A) Imbedding in three dimensions of 1000 successive points of the
Mackey-Glass chaotic timeseries with delay parameter T = 17 and sampling pa­
rameter ~ = 6. (B) Normalized Prediction Error vs. Number of Training Data.
Squares are runs with the multi-resolution hierarchy runs. The circle is the back
propagation benchmark. The horizontal line is included for visual reference only
and is not intended to imply a scaling law for back propagation.

The solid lines in figure [3] show the resulting timeseries for T = 17, a = 0.2,
and b = 0.1; note that it is cyclic, but not periodic. The characteristic time of
the series, given by the inverse of the mean of the power spectrum, is tcha,. ~
50. Classical techniques like linear predictive coding and Gabor-Volterra-Wiener
polynomial expansions typically do no better than chance when predicting beyond
tcha,. [10].

For purposes of comparison, the sampling parameter and prediction time are
chosen to be ~ = 6 and T = 85 > tcha,. respectively. Figure [2A] shows a projection
of the four dimensional state space imbedding onto three dimensions. The orbits of
the series lie on a fuzzy two dimensional subspace which is a strange attractor of
fractal dimension 2.1.

This problem has been studied by both conventional data analysis techniques
and by neural network methods.

It was first studied by Farmer and Sidorowich who locally fitted linear and
quadratic surfaces directly to the data. [11,10]. The exemplars in the imbedding
space were stored in a k-d tree structure in order to allow rapid determination of
proximity relationships [3,4,19]. The local surface fitting method is extremely ef­
ficient computationally. This kind of approach has found wide application in the
statistics community [5]. Casdagli has applied the method of radial basis functions,
which is an exact interpolation method and also depends on explicit storage of the
data. [9]. The radial basis functions method is a global method and becomes com-

36 Moody

putationally expensive when the number of exemplars is large, growing as O(P3).
Both approaches yield excellent results when used as off-line algorithms, but do not
seem to be well suited to real-time application domains.

For real-time applications, little a priori knowledge about the data can be as­
sumed, large amounts of past data can't be stored, the function being learned may
vary with time, and computing speed is essential.

Three different neural network techniques have been applied to the timeseries
prediction problem, back propagation [13], self-organized, locally-tuned processing
units [18,17], and an approach based on the GMDH method and simulated an­
nealing [21]. The first two approaches can in principle be applied in real time,
because they don't require explicit storage of past data and can adapt continuously.
Back propagation yields better predictions since it is completely supervised, but
the locally-tuned processing units learn substantially faster. The GMDH approach
yields excellent results, but is computationally intensive and is probably limited to
off-line use.

The multi-resolution hierarchy is intended to offer speed, precision, and the
ability to adapt continuously in real time. Its application to the Mackey-Glass
prediction problem is demonstrated in two different modes of operation: off-line
learning and real-time learning.

3.1 Off-Line Learning

In off-line mode, a five level hierarchy was trained to predict the future values. At
each level, a regular rectangular lattice was used, with each lattice having A intervals
and therefore A + 1 nodes per dimension. The lattice resolutions were chosen to
be (AI = 4, A2 = 8, A3 = 16, A4 = 32, As = 64). The corresponding number of
vertices in each ofthe virtual4-dimensionallattices was therefore (Ml = 625, M2 =
6,561, M3 = 83,521, M4 = 1,185,921, Ms = 17,850,625). The corresponding
lookup table sizes were (TI = 625, T2 = 4096, T3 = 4096, T4 = 4096, Ts = 4096).
Note that TI = M 1, so hashing was not required for the first layer. For all other
layers, T>. < M>., so hashing was used. For layers 3, 4, and 5, T>. <: M>., so
hashing resulted in a dramatic reduction in the memory required. The neighborhood
response function RI3(E) was a B-spline with support in the 16 cells adjacent to each
lattice point EI3. Hash table collisions were not resolved.

The learning method used was simple gradient descent. The lookup table values
were updated after the presentation of each exemplar. At each level, the training
set was presented repeatedly until a convergence criterion was satisfied. The levels
were trained sequentially: level 1 was trained until it converged, followed by level
2, and so on.

The performance of the system as a function of training set size is shown in fig­
ure [2B]. The normalized error is defined as [rms error]/[O'], where 0' is the standard
deviation of the timeseries. For each run, a different segment of the timeseries was
used. In all cases, the performance was measured on an independent test sequence
consisting of the 500 exemplars immediately following the training sequence. The
prediction error initially drops rapidly as the number of training data are increased,

"Fast Learning in Multi-Resolution Hierarchies" 37

but then begins to level out. This leveling out is most likely caused by collision
noise in the hash tables. Collision resolution techniques should improve the results,
but have not yet been implemented.

For training sets with 500 exemplars, the multi-resolution hierarchy achieved
prediction accuracy equivalent to that of a back propagation network trained by
Lapedes and Farber [13]. Their network had four linear inputs, one linear output,
and two internal layers, each containing 20 sigmoidal units. The layers were fully
connected yielding 541 adjustable parameters (weights and thresholds) total. They
trained their network in off-line mode using conjugate gradient, which they found
to be significantly faster than gradient descent.

The multi-resolution hierarchy converged in about 3.5 minutes on a Sun 3/60 for
the 500 exemplar runs. Lapedes estimates that the back propagation network re­
quired probably 5 to 10 minutes ofCray X/MP time running at about 90 Mflops [12].
This would correspond to about 4, 000 to 8, 000 minutes of Sun 3/60 time. Hence,
the multi-resolution hierarchy converged about three orders of magnitude faster that
the back propagation network. This comparison should not be taken to be univer­
sal, since many implementations of both back propagation and the multi-resolution
hierarchy are possible. Other comparisons could easily vary by factors of ten or
more.

It is interesting to note that the training time for the multi-resolution hierarchy
increased sub-linearly with training set size. This is because the lookup table values
were varied after the presentation of each exemplar, not after presentation of the
whole set. A similar effect should be observable in back propagation nets. In fact,
training after the presentation of each exemplar could very likely increase the overall
rate of convergence for a back propagation net.

3.2 Real-Time Learning

Unlike most standard curve and surface fitting methods, the multi-resolution hi­
erarchy is extremely well-suited for real-time applications. Indeed, the standard
CMAC model has been applied to the real-time control of robots with encouraging
success [16,15].

Figure [3] illustrates a two level hierarchy (with 5 and 9 nodes per dimension)
learning to predict the timeseries for T = 50 from an initial tabula rasa configuration
(all lookup table values set to zero). The solid line is the actual timeseries data, while
the dashed line are the predicted values. The predicted values lead the actual values
in the graphs. Notice that the system discovers the intrinsically cyclic nature of the
series almost immediately. At the end of a single pass through 9,900 exemplars,
the normalized prediction error is below 5% and the fit looks very good to the eye.

On a Sun 3/50, the algorithm required 1.4 msec per level to respond to and
learn from each exemplar. At this rate, the two level system was able to process
360 exemplars (over 7 cycles of the timeseries) per second. This rate would be
considered phenomenal for a typical back propagation network running on a Sun
3/50.

38 Moody

1.0

0.8
III
0

~ 0.6 >
d
0 . .::l

0.4 u
d

tf
0.2

0.0

f..J I I I I -
~

) I ~
,

H

~
~-, ' , I '-• I

I
, I'

,I

- \: -
II

l- I II _

1
h 1 1 1 " -
o 100 200 300 400

Time (= # of Exemplars)

1.0 f..J I I I I _

0.8 - ~
J t ~

~ ,
III

,1-
0 ~I
~ 0.6 - , 1

> I r
d I

I
0 • .::l 0.4 r-< , -u
d ,
~ II

0.2 l- I -

0.0 h 1 I I 1 -
9500 9600 9700 9800 9900

Time (= # of exemplars)

Figure 3: An example of learning to predict the Mackey-Glass chaotic timeseries in
real time with a two-stage multi-resolution hierarchy.

4 Discussion

There are two reasons that the multi-resolution hierarchy learns much more quickly
than back propagation. The first is that the hierarchy uses local representations
of the input space and thus requires evaluation and modification of only a few
lookup table values for each exemplar. In contrast, the complete back propagation
net must be evaluated and modified for each exemplar. Second, the learning in
the multi-resolution hierarchy is cast as a purely quadratic optimization procedure.
In contrast, the back propagation procedure is non-linear and is plagued with a
multitude of local minima and plateaus which can significantly retard the learning
process.

In these respects, the multi-resolution hierarchy is very similar to the local sur­
face fitting techniques exploited by Farmer and Sidorowich. The primary difference,
however, is that the hierarchy, with its multi-resolution architecture and hash table
data structures offers the flexibility needed for real time problem domains and does
not require the explicit storage of past data or the creation of data structures which
depend on the distribution of data.

Acknowledgements

I gratefully acknowledge helpful comments from Chris Darken, Doyne Farmer, Alan
Lapedes, Tom Miller, Terry Sejnowski, and John Sidorowich. I am especially
grateful for support from ONR grant NOO0l4-86-K-0310, AFOSR grant F49620-
88-C0025, and a Purdue Army subcontract.

"Fast Learning in Multi-Resolution Hierarchies" 39

References
[1] J.S. Albus. Brain, Behavior and Rohotic6. Byte Books, 1981.

[2] J.S. Albus. A new approach to manipulator control: the cerebellar model articulation con­
troller (CMAC). J. Dyn. SY6. Mea6., Contr., 97:220, 1975.

[3] Jon L. Bentley. Multidimensional binary search trees in database applications. IEEE Tran6.
on Software Engineering, SE-5:333, 1979.

[4] Jon L. Bentley. Multidimensional divide and conquer. Communication6 of the A CM, 23:214,
1980.

[5] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Clauification and Regreuion
Tree6. Wadsworth, Monterey, CA, 1984.

[6] Peter J. Burt and Edward H. Adelson. The laplacian pyramid as a compact image code.
IEEE Tran6. Communication6, COM-31:532, 1983.

[7] Peter J. Burt and Edward H. Adelson. A multiresolution spline with application to image
mosaics. A CM Tran6. on Graphic6, 2:217, 1983.

[8) J.L. Carter and M.N. Wegman. Universal classes of hash functions. In Proceeding6 of the
Ninth Annual SIGA CT Conference, 1977.

[9] M. Casdagli. Nonlinear Prediction of Chaotic Time Serie6. Technical Report, Queen Mary
College, London, 1988.

[10) J.D. Fanner and J.J. Sidorowich. Erploiting Cha06 to Predict the Future and Reduce Noi6e.
Technical Report, Los Alamos National Laboratory, Los Alamos, New Mexico, 1988.

[11] J.D. Fanner and J.J. Sidorowich. Predicting chaotic time series. PhY6icai Review Letter6,
59:845, 1987.

[12] A. Lapedes. 1988. Personal communication.

[13] A.S. Lapedes and R. Farber. Nonlinear Signal Proceuing U6ing Neural Network6: Prediction
and SY6tem Modeling. Technical Report, Los Alamos National Laboratory, Los Alamos, New
Mexico, 1987.

[14) M.C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science,
197:287.

[15] W. T. Miller, F. H. Glanz, and L. G. Kraft. Application of a general learning algorithm to the
control of robotic manipulators. International Journal of Robotic6 Re6earch, 6(2):84, 1987.

[16) W. Thomas Miller. Sensor-based control of robotic manipulators using a general learning
algorithm. IEEE Journal of Rohotic6 and Automation, RA-3(2):157, 1987.

[17) J. Moody and C. Darken. Fast learning in networks of locally-tuned processing units. Neural
Computation, 1989. To Appear.

[18] J. Moody and C. Darken. Learning with localized receptive fields. In Touretzky, Hinton, and
Sejnowski, editors, Proceeding6 of the 1988 Connectioni6t Model6 Summer School, Morgan
Kaufmann, Publishers, 1988.

[19] S. Omohundro. Efficient algorithms with neural network behavior. Compler SY6tem6, 1:273.

[20] T. Sejnowski and C. Rosenberg. Parallel networks that learn to pronounce English text.
Compler SY6tem6, 1:145, 1987.

[21) M.F. Tenorio and W.T. Lee. Self-organized neural networks for the identification problem.
Poster paper presented at the Neural Infonnation Processing Systems Conference, 1988.

