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Abstract 
MOS charge storage has been demonstrated as an effective method to store 

the weights in VLSI implementations of neural network models by several 
workers 2 . However, to achieve the full power of a VLSI implementation of 
an adaptive algorithm, the learning operation must built into the circuit. We 
have fabricated and tested a circuit ideal for this purpose by connecting a 
pair of capacitors with a CCD like structure, allowing for variable size weight 
changes as well as a weight decay operation. A 2.51-' CMOS version achieves 
better than 10 bits of dynamic range in a 140/' X 3501-' area. A 1.25/' chip 
based upon the same cell has 1104 weights on a 3.5mm x 6.0mm die and is 
capable of peak learning rates of at least 2 x 109 weight changes per second. 

1 Adaptive Networks 

Much of the recent excitement about neural network models of computation has 
been driven by the prospect of new architectures for fine grained parallel compu­
tation using analog VLSI. Adaptive systems are espescially good targets for analog 
VLSI because the ada.ptive process can compensate for the inaccuracy of individual 
devices as easily as for the variability of the signal. However, silicon VLSI does not 
provide us with an ideal solution for weight storage. Among the properties of an 
ideal storage technology for analog VLSI adaptive systems are: 

• The minimum available weight change ~w must be small. The simplest adap­
tive algorithms optimize the weights by minimizing the output error with a 
steepest descent search in weight space [1]. Iterative improvement algorithms 
such as steepest descent are based on the heuristic assumption of 'better' 
weights being found in the neighborhood of 'good' ones; a heuristic that fails 
when the granularity of the weights is not fine enough. In the worst case, the 
resolution required just to represent a function can grow exponentially in the 
dimension of the input space . 

• The weights must be able to represent both positive and negative values and 
the changes must be easily reversible. Frequently, the weights may cycle up 
and down while the adaptive process is converging and millions of incremental 
changes during a single training session is not unreasonable. If the weights 
cannot easily follow all of these changes, then the learning must be done off 
chip. 

1 Now at GTE Laboratories, 40 Sylvan Rd., Waltham, Mass 02254 dbs@gte.com%relay.cs.net 
2For example, see the papers by Mann and Gilbert, Walker and Akers, and Murray et. al. in 
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• The parallelism of the network can be exploited to the fullest only if the 
mechanism controlling weight changes is simple enough to be reproduced at 
each weight. Ideally, the change is determined by some easily computed com­
bination of information local to each weight and signals global to the entire 
system. This type of locality, which is as much a property of the algorithm as 
of the hardware, is necessary to keep the wiring cost associated with learning 
small. 

• Weight decay, Wi = aw with a < 1 is useful although not essential. Global 
decay of all the weights can be used to extend their dynamic range by rescaling 
when the average magnitude becomes too large. Decay of randomly chosen 
weights can be used both to control their magnitude [2] and to help gradient 
searches escape from local minima. 

To implement an analog storage cell with MOS VLSI the most obvious choices 
are non-volatile devices like floating gate and MNOS transistors, multiplying DAC's 
with conventional digital storage, and dynamic analog storage on MOS capacitors. 
Most non-volatile devices rely upon electron tunneling to change the amount of 
stored charge, typically requiring a large amount of circuitry to control weight 
changes. DAC's have already proven themselves in situations where 5 bits or less 
of resolution [3] [4] are sufficient, but higher resolution is prohibitively expensive in 
terms of area. We will show the disadvantage of MOS charge storage, its volatility, 
is more than outweighed by the resolution available and ease of making weight 
changes. 

Representation of both positive and negative weights can be obtained by storing 
the weights Wi differentially on a pair of capacitors in which case 

Differential storage can be used to obtain some degree of rejection of leakage and 
can guarantee that leakage will reduce the magnitude of the weights as compared 
with a scheme where the weights are defined with respect to a fixed level, in which 
case as a weight decays it can change signs. A constant common mode voltage also 
eases the design constraints on the differential input multiplier used to read out the 
weights. An elegant way to manipulate the weights is to transfer charge from one 
capacitor to the other, keeping constant the total charge on the system and thus 
maximizing the dynamic range available from the readout circuit. 

2 Weight Changes 

Small packets of charge can easily be transferred from one capacitor to the other by 
exploiting charge injection, a phenomena carefully avoided by designers of switched 
capacitor circuits as a source of sampling error [5] [6] [7] [8] [9]. An example of a 
storage cell with the simplest configuration for a charge transfer system is shown 
in figure 1. A pair of MOS capacitors are connected by a string of narrow MOS 
transistors, a long one to transfer charge and two minimum length ones to isolate 
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Figure 1: (a) The simplest storage cell, with provisions for only a single size incre­
ment/ decrement operations and no weight decay. (b) A more sophisticated cell with 
facilities for weight decay. By suitable manipulation of the clock signals, the two 
charge transfer transistors can be used to obtain different sizes of weight changes. 
Both circuits are initialized by turning on the access transistors TA and charging 
the capacitors up to a convenient voltage, typically Vnn /2. 

the charge transfer transistor from the storage nodes. For the sake of discussion, we 
can treat the isolation transistors as ideal switches and concentrate on the charge 
transfer transistor that we here assume to be an n-channel device. To increase the 
weight ( See figure 1 ), the charge transfer transistor (TC) and isolation transistor 
attached to the positive storage node (TP) are turned on. When the system has 
reached electrostatic equilibrium the charge transfer transistor (TC) is disconnected 
from the plus storage node by turning off TP and connected to the minus storage 
node by turning on TM. If the charge transfer transistor TC is slowly turned off, the 
mobile charge in its channel will diffuse into the minus node, lowering its voltage. 

A detailed analysis of the charge transfer mechanism has been given elsewhere [10], 
but for the purpose of qualitative understanding of the circuit the inversion charge 
in the charge transfer transistor's channel can be approximated by 

qNinv = Cox(VG - VTE). 

where VT E is the effective threshold voltage and Cox the gate to channel capacitance 
of the charge transfer transistor. The effective threshold voltage is then given by 

where VTO is the threshold voltage in the absence of body effect, 1; J the fermi level, 
Vs the source to substrate voltage, and f the usual body effect coefficient. An even 
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rougher model can be obtained by linearizing the body effect term [6] 

where Cell co.ntains both the gate oxide capacitance and the effects of parasitic 
capacitance and T/ = 'Y /2.j12¢ I I . Within the linearized approximation, the change 
in voltage on a storage node with capacitance Cstore after n transfers is 

1 
Vn = Va + -(VG - VT - T/Va)(1- exp(-an)) 

T/ 
(1) 

with a = Cell /Cstore and where Va is the initial voltage on the storage node. Due 
to the dependence of the size of the transfer on the stored voltage, when the transfer 
direction is reversed the increment size changes unless the stored voltages on the 
capacitors are equal. This can be partially compensated for by using complementary 
pairs of p-channel and n-channel charge transfer transistors, in effect using a string 
of transmission gates to perform charge transfers. A weight decay operation can be 
introduced by using the more complex string of charge transfer transistors shown 
in figure lb. A weight decay is initiated by turning off the transistor in the middle 
of the string (TI) and turning on all the other transistors. When the two sides of 
the charge transfer string have equilibrated with their respective storage nodes, the 
connections to the storage nodes ( TM and TP ) are turned off and the two cha.rge 
transfer transistors ( TCP and TCM ) are allowed to exchange charge by turning 
on the transistor, TI, which separates them. When two equal charge packets have 
been obtained TI is turned off again and the charge packets held by TCP and TCM 
are injected back into the storage capacitors. The resulting change in the stored 
weight is 

tl. vdecay = - CCeff (V+ - v_). 
ox 

which corresponds to multiplying the weight by a constant a < 1 as desired. Besides 
allowing for weight decay, the more complex charge string shown in figure Ib ca.n also 
be used to obtain different size weight changes by using different clock sequences . 

3 Experimental Evaluation 

Test chips have been fabricated in both 1.25J.l and 2.5J.l CMOS, using the AT&T 
Twin Tub technology[ll]. To evaluate the properties of an individual cell, especially 
the charge transfer mechanism, an isolated test structure consisting of five storage 
cells was built on one section of the 2.5J.l chip. The storage cells were differen­
tially read out by two quadrant transconductance amplifiers whose input-output 
characteristics are shown in figure 2. By using the bias current of the amplifiers as 
an input, the amplifiers were used as two quadrant multipliers. Since many neural 
network models call for a sigmoidal nonlinearity, no attempt was made to linearize 
the operation of the multiplier. The output currents of the five multipliers were 
summed by a single output wire and the voltages on each of the ten capacitors were 
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Figure 2: A family of transfer characteristics from one of the transconductance 
multipliers for several different values of stored weight. The different branches of 
the curves are each separated by ten large charge transfers. No attempt was made 
to linearize the input/output characteristic since many neural network models call 
for non-linearities. 

buffered by voltage followers to allow for detailed examination of the inner workings 
of the cell. 

After trading off between hold time, resolution and area we decided upon 20Jl 
long charge transfer transistors and 2000Jl2 storage capacitors with 2.5Jl technology 
based upon the minimum channel width of 2.5Jl. For a 20Jl long channel and a 
2.5V gate to source voltage the channel transit time To is approximately 5 ns and 
charge transfer clock frequencies exceeding 1 o MHz are possible without measurable 
pumping of charge into the substrate. The 2.5p wide access transistors were 12J-l 
long, leading to leakage rates from the individual capacitors of about 1% of the 
stored value in 100s, limited by surface leakage in our unpassivated test structures. 
Even with uncapped wafers, the leakage was small enough to allow all the tests 
described here to be made without special provisions for environmental control of 
either temperature or humidity. As mentioned earlier, the more complex set of 
charge transfer transistors needed to introduce weight decay can also be used to 
obtain several different size of charge transfers, a small weight change by using 
the two long transistors in sequence and a coarse one by treating the two long 
transistors and the isolation transistor separating them as a single device. Using 
the small weight changes, the worst case resolution was 10 bits ( near ~ V = 0 ) 
and the results where in excellent agreement with the predictions of equation 1 
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Figure 3: The voltage on the two storage capacitors when the weight is initially 
set to saturation using large increments and then reduced back towards zero using 
weight decay. The granularity of the curves is an experimental artifact of the digital 
voltmeter's resolution. 

using the effective capacitance as a fitting parameter. In the figure 3 we use large 
charge transfers to quickly increment the weight up to its maximum value and then 
reduce it back to zero with weight decays, demonstrating the expected exponential 
dependence of the stored voltage on the number of weight decays. Even under 
repeated cycling up and down through the entire differential voltage range of the 
cell, the total amount of charge on the cell remained constant for frequencies under 
10M H z with the exception of the expected losses due to leakage. 

The long term goal of this work is to develop analog VLSI chips that are complete 
'learning machines', capable of modified their own weights when provided with input 
data and some feedback based on the output of the network. However, the study 
of learning algorithms is in a state of flux and few, if any, algorithms have been 
optimized for VLSI implementation. Rather than cast an inappropriate algorithm 
in silicon, we have designed our first chips to be used as adaptive systems with 
an external controller, allowing us to develop algorithms that are appropriate for 
the medium once we understand its properties. The networks are organized as 
rectangular matrix multipliers with voltage inputs and current outputs with 46 
inputs and 24 outputs in a 96 pin package for the 1.251-' chip. Since none of the 
analog input/output lines of the chip are multiplexed, larger and more complicated 
networks can be built by cascading several chips. 

To the digital controller, the chip looks like a 1104 x 2 static RAM with some 
extra clock inputs to drive the charge transfers. The charge transfer clock signals are 
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distributed globally and are connected to the individual strings of charge transfer 
transistors through a pair of 2 x 2 cross bar switches controlled by two bits of static 
RAM local to each cell. The use of a pair of cross bar switches is necessitated 
by the faciltities for weight decay; if the simpler charge transfer string shown in 
figure la were used then only a single switch would be needed. When both a 
cell's RAMs are zeroed, the global charge transfer lines are not connected to the 
charge transfer transistors. The global lines are connected to the individual strings 
of charge transfer transistors either normally or in reverse depending upon which 
RAM cell contains a one. By reversing the order of the signals on the charge 
transfer lines, a weight change can also be reversed. Neglecting the dependence of 
the size of the charge transfer upon stored weight, the RAM's represent a weight 
change vector f).Cij with components f).wij E [-1,0,1]. Once a weight change vector 
has been written serially to the RAM's, the weight changes along that vector are 
made in parallel by manipulating the charge transfer lines. This architecture is 
also a powerful way to implement programable networks of fixed weights since an 
arbitrary matrix of 10 bit weights can be written to the chip in a few milliseconds 
or less if an efficient decomposition of the desired weight vector into global charge 
transfers is made. In view of the speed with which the chip can evaluate the output 
of a network, an overhead of less than a percent for a refresh operation is acceptable 
in many applications. 

4 Conclusions 

We have implemented a generic chip to facilitate studying adaptive networks by 
building them in analog VLSI. By exploiting the well known properties of charge 
storage and charge injection in a novel way, we have achieved a high enough level of 
complexity ( > 103 weights and 10 bits of analog depth) to be interesting, in spite 
of the limitation to a modest 6.00mm x 3.5mm die size required by a multi-project 
fabrication run. If the cell were optimized to represent fixed weight networks by 
eliminating weight decay and bi-directional weight changes, the density could easily 
be increased by a factor of two with no loss in resolution. Once a weight change 
vector has been written to the RAM cells, charge transfers can be clocked at a 
rate of 2M H z chip corresponds to a peak learning rate of 2 x 109 updates/second, 
exceeding the speeds of 'digital neurocomputers' based upon DSP chips by two 
orders of magnitude. 
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