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ABSTRACT 
We introduce a learning algorithm for multilayer neural net­

works composed of binary linear threshold elements. Whereas ex­
isting algorithms reduce the learning process to minimizing a cost 
function over the weights, our method treats the internal repre­
sentations as the fundamental entities to be determined. Once a 
correct set of internal representations is arrived at, the weights are 
found by the local aild biologically plausible Perceptron Learning 
Rule (PLR). We tested our learning algorithm on four problems: 
adjacency, symmetry, parity and combined symmetry-parity. 

I. INTRODUCTION 
Consider a network of binary linear threshold elements i, whose state Si = ±1 

is determined according to the rule 

Si = sign(L WijSj + Oi) . (1) 
j 

Here Wij is the (unidirectional) weight assigned to the connection from unit j to 
i; 0i is a local bias. We focus our attention on feed-forward networks in which N 
units of the input layer determine the states of H units of a hidden layer; these, in 
turn, feed one or more output elements. 

For a typical A vs B classification task such a network needs a single output, 
with sout = + 1 (or -1) when the input layer is set in a state that belongs to catego~y 
A (or B) of input space. The basic problem of learning is to find an algorithm, that 
produces weights which enable the network to perform this task. In the absence 
of hidden units learning can be accomplished by the PLR [Rosenblatt 1962], which 
we now briefly Jcscribe. Consider j = 1, ... , N source units and a single target unit 
i. When the source units are set in anyone of p. = 1, .. M patterns, i.e. Sj = er, 
we require that the target unit (determined using (1» takes preassigned values er. 
Learning takes place in the course of a training session. Starting from any arbitrary 
initial guess for the weights, an input 1/ is presented, resulting in the output taking 
some value Sr. Now modify every weight according to the rule 

W·· -+ W·· + "(1 - SI!CI!)CI!Cl( 
11 IJ" 1 ~I ~I ~J ' (2) 
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where TJ > 0 is a parameter (er = 1 is used to modify the bias 0). Another 
input pattern is presented, and so on, until all inputs draw the correct output. 
The Perceptron convergence theorem states [Rosenblatt 1962, Minsky and Papert 
1969] that the PLR will find a solution (if one exists), in a finite number of steps. 
However, of the 22N possible partitions of input space only a small subset (less than 
2N2 / N!) is linearly separable [Lewis and Coates 1967], and hence soluble by single­
layer perceptrolls. To get around this, hidden units are added. Once a single hidden 
layer (with a large enough number of units) is inserted beween input and output, 
every classification problem has a solution. But for such architectures the PLR 
cannot be implemented; when the network errs, it is not clear which connection is 
to blame for the error, and what corrective action is to be taken. 

Back-propagation [Rumelhart et al 1986] circumvents this "credit-assignment" 
problem by dealing only with networks of continuous valued units, whose response 
function is also continuous (sigmoid). "Learning" consists of a gradient-descent 
type minimization of a cost function that measure the deviation of actual outputs 
from the required ones, in the space of weights Wij, 0i. A new version of BP, "back 
propagation of desired states", which bears some similarity to our algorithm, has 
recently been introduced [Plaut 1987]. See also Ie Cun [1985] and Widrow and 
Winter [1988] for related methods. 

Our algorithm views the internal representations associated with various inputs 
as the basic independent variables of the learning process. This is a conceptually 
plausible assumption; in the course of learning a biological or artificial system should 
form maps and representations of the external world. Once such representations 
are formed, the weights can be found by simple and local Hebbian learning rules 
such as the PLR. Hence the problem of learning becomes one of searching for proper 
internal representations, rather than one of minimization. Failure of the PLR to 
converge to a solution is used as an indication that the current guess of internal 
representations needs to be modified. 

II. THE ALGORITHM 
If we know the internal representations (e.g. the states taken by the hidden 

layer when patterns from the training set are presented), the weights can be found 
by the PLR. This way the problem of learning becomes one of choosing proper 
internal representations, rather than of minimizing a cost function by varying the 
values of weights. To demonstrate our approache, consider the classification prob­
lem with output values, sout,~ = eout,~, required in response to J1. = I, ... , M input 
patterns. If a solution is found, it first maps each input onto an internal represen­
tation generated on the hidden layer, which, in turn, produces the correct output. 
Now imagine that we are not supplied with the weights that solve the problem; 
however the correct internal representations are revealed. That is, we are given a 
table with M rows, one for each input. Every row has H bits e;'~, for i = I, .. H, 
specifying the state of the hidden layer obtained in response to input pattern JJ. 
One can now view each hidden-layer cell i as the target cell of the PLR, with the 
N inputs viewed as source. Given sufficient time, the PLR will converge to a set 
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of weights Wi,j, connecting input unit j to hidden unit i, so that indeed the input­
output association that appears in column i of our table will be realized. In a 
similar fashion, the PLR will yield a set of weights Wi, in a learning process that 
uses the hidden layer as source and the output unit as target. Thus, in order to 
solve the problem of learning, all one needs is a search procedure in the space of 
possible internal representations, for a table that can be used to generate a solution. 
Updating of weights can be done in parallel for the two layers, using the current 
table of internal representations. In the present algorithm, however, the process is 
broken up into four distinct stages: 

1. SETINREP: Generate a table of internal representations {e?'II} by presenting 
each input pattern from the training set and calculating the state on the hidden 
layer,using Eq.(la), with the existing couplings Wij and ej. 
2. LEARN23: The hidden layer cells are used as source, and the output as the 
target unit of the PLR. The current table of internal representations is used as 
the training set; the PLR tries to find appropriate weights Wi and e to obtain the 
desired outputs. If a solution is found, the problem has been solved. Otherwise 
stop after 123 learning sweeps, and keep the current weights, to use in IN REP. 

3. INREP: Generate a new table of internal representations, which, when used in 
(lb), yields the correct outputs. This is done by presenting the table sequentially, 
row by row, to the 11idden layer. If for row v the wrong output is obtained, the 
internal representation eh ,1I is changed. Having the wrong output means that the 
"field" produced by the hidden layer on the output unit, hout ,lI = Ej Wje~'11 is 
either too large or too small. We then randomly pick a site j of the hidden layer, 
and try to flip the sign of e;'II; if hout ,lI changes in the right direction, we replace 
the entry of our table, i.e. 

&~,II -. _&~,II 
'3 'J' 

We keep picking sites and changing the internal representation of pattern v until 
the correct output is generated. We always generate the correct output this way, 
provided Ej IWjl > leoutl (as is the case for our learning process in LEARN23). 
This procedure ends with a modified table which is our next guess of internal 
representations. 

4. LEARN12: Apply the PLR with the first layer serving as source, treating 
every hidden layer site separately as target. Actually, when an input from the 
training set is presented to the first layer, we first check whether the correct result 
is produced on the output unit of the network. If we get wrong overall output, we 
use the PLR for every hidden unit i, modifying weights incident on i according 
to (2), using column i of the table as the desired states of this unit. If input v 
does yield the correct output, we insert the current state of the hidden layer as the 
internal representation associated with pattern v, and no learning steps are taken. 
We sweep in this manner the training set, modifying weights Wij, (between input 
and hidden layer), hidden-layer thresholds ei, and, as explained above, internal 
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representations. If the network has achieved error-free performance for the entire 
training set, learning is completed. If no solution has been found after 112 sweeps 
of the training set, we abort the PLR stage, keep the present values of Wij, OJ, and 
start SETINREP again. 

This is a fairly complete account of our procedure (see also Grossman et al 
[1988]). There are a few details ·that need to be added. 

a) The "impatience" parameters: 112 and 123, which are rather arbitrary, are 
introduced to guarantee that the PLR stage is aborted if no solution is found. This 
is necessary since it is not clear that a solution exists for the weights, given the 
current table of internal representations. Thus, if the PLR stage does not converge 
within the time limit specified, a new table of internal representations is formed. 
The parameters have to be large enough to allow the PLR to find a solution (if 
one exists) with sufficiently high probability. On the other hand, too large values 
are wasteful, since they force the algorithm to execute a long search even when 
no solution exists. Therefore the best values of the impatience parameters can be 
determined by optimizing the performance of the network; our experience indicates, 
however, that once a "reasonable" range of values is found, performance is fairly 
insensitive to the precise choice. 

b) Integer weights: In the PLR correction step, as given by Eq.2, the size of 
D.. W is constant. Therefore, when using binary units, it can be scaled to unity (by 
setting T] = 0.5) and one can use integer Wi,j'S without any loss of generality. 

c) Optimization: The algorithm described uses several parameters, which should 
be optimized to get the best performance. These parameters are: 112 and 123 - see 
section (a) above; Imax - time limit, i.e. an upper bound to the total number of 
training sweeps; and the PLR training parameters - i.e the increment of the weights 
and thresholds during the PLR stage. In the PLR we used values of 1] ~ 0.1 [see 
Eq. (2) ] for the weights, and 1] ~ 0.05 for thresholds, whereas the initial (random) 
values of all weights were taken from the interval (-0.5,0.5), and thresholds from 
(-0.05,0.05). In the integer weights program, described above, these parameters are 
not used. 

d) Treating Multiple Outputs: In the version of inrep described above, we 
keep flipping the internal representations 'until we find one that yields the correct 
output, i.e. zero error for the given pattern. This is not always possible when using 
more than one output unit. Instead, we can allow only for a pre-specified number 
of attempted flips, lin' and go on to the next pattern even if vanishing error was 
not achieved. In this modified version we also introduce a slightly different, and less 
"restrictive" criterion for accepting or rejecting a flip. Having chosen (at random) 

a hidden unit i, we check the effect of flipping the sign of ~;,II on the total output 
error, i.e. the number of wrong bits (and not on the output field, as described 
above). If the output error is not increased, the flip is accepted and the table of 
internal representations is changed accordingly. 

This modified algorithm is applicable for multiple-output networks. Results of 
preliminary experiments with this version are presented in the next section. 
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III. PERFORMANCE OF THE ALGORITHM 

The "time" parameter that we use for measuring performance is the number of 
sweeps through the training set of M patterns needed in order to find the solution. 
Namely, how many times each pattern was presented to the network. In each cycle 
of the algorithm there are 112 + 123 such sweeps. For each problem, and each 
parameter choice, an ensemble of many independent runs, each starting with a 
different random choice of initial weights, is created. In general, when applying a 
learning algorithm to a given problem, there are cases in which the algorithm fails 
to find a solution within the specified time limit (e.g. when BP get stuck in a local 
minimum), and it is impossible to calculate the ensemble average of learning times. 
Therefore we calculate, as a performance measure, either the median number of 
sweeps, t m , or the "inverse average rate", T, as defined in Tesauro and Janssen 
[1988]. 

The first problem we studied is contiguity: the system has to determine whether 
the number of clumps (i.e. contiguous blocks) of +1 's in the input is, say, equal to 
2 or 3. This is called [Denker et al 1987] the "2 versus 3" clumps predicate. We 
used, as our training set, all inputs that have 2 or 3 clumps, with learning cycles 
parametrized by 112 = 20 and 123 = 5. Keeping N = 6 fixed, we varied H; 500 
cases were used for each data point of Fig.l. 

400 -
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H 

Figure 1. Median number of sweeps tm , needed to train a network of N = 6 
input units, over an exhaustive training set, to solve the" 2 vs 3" clumps predicate, 
plotted against the number of hidden units H. Results for back-propagation [Denker 
et al 1987] (x) and this work (¢) are shown. 
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In the next problem, symmetry, one requires sout = 1 for reflection-symmetric 
inputs and -1 otherwise. This can be solved with H ~ 2 hidden units. Fig. 2 
presents, for H = 2, the median number of exhaustive training sweeps needed to 
solve the problem, vs input size N. At each point 500 cases were run, with 112 = 10 
and 123 = 5. We always found a solution in' less than 200 cycles. 

6 

N 
8 10 

Figure 2. Median number of sweeps t m , needed to train networks on 
symmetry (with H = 2). 

In the Parity problem one requires sout = 1 for an even number of +1 bits in 
the input, and -1 otherwise. In order to compare performance of our algorithm to 
that of BP, we studied the Parity problem, using networks with an architecture of 
N : 2N : 1, as chosen by Tesauro and Janssen [1988]. 

We used the integer version of our algorithm, briefly described above. In this 
version of the algorithm the weights and thresholds are integers, and the increment 
size, for both thresholds and weights, is unity. As an initial condition, we chose 
them to be +1 or -1 randomly. In the simulation of this version, all possible input 
patterns were presented sequentially in a fixed order (within the perceptron learning 
sweeps). The results are presented in Table 1. For all choices of the parameters 
( It2, 123 ), that are mentioned in the table, our success rate was 100%. Namely, the 
algorithm didn't fail even once to find a solution in less than the maximal number 
of training cycles Imax specified in the table. Results for BP, r(BP) (from Tesauro 
and Janssen 1988) are also given in the table. Note that BP does get caught in 
local minima, but the percentage of such occurrences was not reported. 
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For testing the multiple output version of the algorithm we use8 the combined 
parity and symmetry problem; the network has two output units, both connected to 
all hidden units. The first output unit performs the parity predicate on the input, 
and the second performs the symmetry predicate. The network architecture was 
N:2N:2 and the results for N=4 .. 7 are given in Table 2. The choice of parameters 
is also given in that table. 

N (I12,/23) Ima.x tm T(CH IR) T(BP) 
3 (8,4) 10 3 3 3g 
4 (9,3)(6,6) 20 4 4 75 
5 (12,4)(9,6) 40 8 6 130 
6 (12,4)(10,5) 120 19 9 310 

I 

7 (12,4)(15,5) 240 290 30 80Q 
8 (20,10) 900 2900 150 20db 
9 (20,10) 900 2400 1300 

Table 1. Parity with N:2N:1 architecture. 

N 112 h3 lin Ima.x tm T 

4 12 8 7 40 50 33 
5 14 7 7 400 900 350 
6 18 9 7 900 5250 925 
7 40 20 7 900 6000 2640 

Table 2. Parity and Symmetry with N :2N:2 architecture. 

IV. DISCUSSION 

We have presented a learning algorithm for two-Iayerperceptrons, that searches 
for internal representations of the training set, and determines the weights by the 
local, Hebbian perceptron learning rule. Learning by choice of internal represen­
tation may turn out to be most useful in situations where the "teacher" has some 
information about the desired internal representations. 

We demonstrated that our algorithm works well on four typical problems, and 
studied the manner in which training time varies with network size. Comparisons 
with back-propagation were also made. it should be noted that a training sweep 
involves much less computations than that of back-propagation. We also presented 
a generalization of the algorithm to networks with multiple outputs, and found 
that it functions well on various problems of the same kind as discussed above. It 
appears that the modification needed to deal with multiple outputs also enables us 
to solve the learning problem for network architectures with more than one hidden 
layer. 
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At this point we can offer only very limited discussion of the interesting ques­
tion - why does our algorithm work at all? That is, how come it finds correct 
internal representations (e.g. "tables") while these constitute only a small fraction 
of the total possible number (2H2N)? The main reason is that our procedure ac­
tually does not search this entire space of tables. This large space contains a small 
subspace, T, of "target tables", i.e. those that can be obtained, for all possible 
choices of w{j and OJ, by rule (1), in response to presentation of the input patterns. 
Another small subspace S, is that of the tables that can potentially produce the 
required output. Solutions of the learning problem constitute the space T n S. 
Our algorithm iterates between T and S, executing also a "walk" (induced by the 
modification of the weights due to the PLR) within each. 

An appealing feature of our algorithm is that it can be implemented in a 
manner that uses only integer-valued weights and thresholds. This discreteness 
makes the analysis of the behavior of the network much easier, since we know 
the exact number of bits used by the system in constructing its solution, and do 
not have to worry about round-off errors. From a technological point of view, for 
hardware implementation it may also be more feasible to work with integer weights. 

We are extending this work in various directions. The present method needs, in 
the learning stage, M H bits of memory: internal representations of all M training 
patterns are stored. This feature is biologically implausible and may be techno­
logically limiting; we are developing a method that does not require such memory. 
Other directions of current study include extensions to networks with continuous 
variables, and to networks with feed-back. 
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