
GENESIS: A SYSTEM FOR SIMULATING NEURAL
NETWOfl.KS

Matthew A. Wilson, Upinder S. Bhalla, John D. Uhley, James M. Bower.
Division of Biology

California Institute of Technology
Pasadena, CA 91125

ABSTRACT

We have developed a graphically oriented, general purpose
simulation system to facilitate the modeling of neural networks.
The simulator is implemented under UNIX and X-windows and is
designed to support simulations at many levels of detail.
Specifically, it is intended for use in both applied network
modeling and in the simulation of detailed, realistic, biologically­
based models. Examples of current models developed under this
system include mammalian olfactory bulb and cortex, invertebrate
central pattern generators, as well as more abstract connectionist
simulations.

INTRODUCTION

Recently, there has been a dramatic increase in interest in exploring the
computational properties of networks of parallel distributed processing elements
(Rumelhart and McClelland, 1986) often referred to as Itneural networks"
(Anderson, 1988). Much of the current research involves numerical simulations of
these types of networks (Anderson, 1988; Touretzky, 1989). Over the last several
years, there has also been a significant increase in interest in using similar computer
simulation techniques to study the structure and function of biological neural
networks. This effort can be seen as an attempt to reverse-engineer the brain with
the objective of understanding the functional organization of its very complicated
networks (Bower, 1989). Simulations of these systems range from detailed
reconstructions of single neurons, or even components of single neurons, to
simulations of large networks of complex neurons (Koch and Segev, 1989).
Modelers associated with each area of research are likely to benefit from exposure to
a large range of neural network simulations. A simulation package capable of
implementing these varied types of network models would facilitate this interaction.

485

486 Wilson, Bhalla, Uhley and Bower

DESIGN FEATURES OF THE SIMULATOR

We have built GENESIS (GEneral NEtwork SImulation System) and its graphical
interface XODUS (X-based Output and Display Utility for Simulators) to provide a
standardized and flexible means of constructing neural network simulations while
making minimal assumptions about the actual structure of the neural components.
The system is capable of growing according to the needs of users by incorporating
user-defined code. We will now describe the specific features of this system.

Device independence.

The entire system has been designed to run under UNIX and X-windows (version
11) for maximum portability. The code was developed on Sun workstations and has
been ported to Sun3's, Sun4's, Sun 386i's, and Masscomp computers. It should be
portable to all installations supporting UNIX and X-II. In addition, we will be
developing a parallel implementation of the simulation system (Nelson et al., 1989).

Modular design.

The design of the simulator and interface is based on a "building-block" approach.
Simulations are constructed of modules which receive inputs, perform calculations
on them, and generate outputs (figs. 2,3). This approach is central to the generality
and flexibility of the system as it allows the user to easily add new features
without modification to the base code.

Interactive specification and control.

Network specification and control is done at a high level using graphical tools and a
network specification language (fig. 1). The graphics interface provides the highest
and most user friendly level of interaction. It consists of a number of tools which
the user can configure to suit a particular simulation. Through the graphical
interface the user can display, control and adjust the parameters of simulations. The
network specification language we have developed for network modeling represents a
more basic level of interaction. This language consists of a set of simulator and
interface functions that can be executed interactively from the keyboard or from
text flies storing command sequences (scripts). The language also provides for
arithmetic operations and program control functions such as looping, conditional
statements, and subprograms or macros. Figures 3 and 4 demonstrate how some of
these script functions are used.

Simulator and interrace toolkits.

Extendable toolkits which consist of module libraries, graphical tools and the
simulator base code itself (fig. 2) provide the routines and modules used to
construct specific simulations. The base code provides the common control and
support routines for the entire system.

GENESIS: A System for Simulating Neural Networks 487

Script Files

Genesis command
window and ke board

Genesis 1%

Gra hics Interface

.. ~ .. ~

.DP~~Data

(
Script Language

Interpreter

Figure 1. Levels Of Interaction With The Simulator

CONSTRUCTING SIMULATIONS

Files

The first step in using GENESIS involves selecting and linking together those
modules from the toolkits that will be necessary for a particular simulation (fig.
2,3). Additional commands in the scripting language establish the network and the
graphical interface (fig. 4).

Module Classes.

Modules in GENESIS are divided into computational modules, communications
modules and graphical modules. All instances of computational modules are called
elements. These are the central components of simulations, performing all of the
numerical calculations. Elements can communicate in two ways: via links and via
connections. Links allow the passing of data between two elements with no time
delay and with no computation being performed on the data. Thus. links serve to
unify a large number of elements into a single computational unit (e.g. they are
used to link elements together to form the neuron in fig. 3C). Connections. on the
other hand. interconnect computational units via simulated communication channels
which can incorporate time delays and perform transformations on data being
transmitted (e.g. axons in fig. 3C). Graphical modules called widgets are used to
construct the interface. These modules can issue script commands as well as respond
to them, thus allowing interactive access to simulator structures and functions.

488 Wilson, Bhalla, Uhley and Bower

Hierarchical organization.

In order to keep track of the structure of a simulation, elements are organized into a
tree hierarchy similar to the directory structure in UNIX (fig. 3B). The tree
structure does not explicitly represent the pattern of links and connections between
elements, it is simply a tool for organizing complex groups of elements in the
simulation.

Simulation example.

As an example of the types of modules available and the process of structuring them
into a network simulation and graphical interface, we will describe the construction
of a simple biological neural simulation (fig. 3). The I11pdel consists of two
neurons. Each neuron contains a passive dendritic compartment, an active cell body,
an axonal output, and a synaptic input onto the dendrite. The axon of one neuron
connects to a synaptic input of the other. Figure 3 shows the basic structure of the
model as implemented under GENESIS. In the model, the synapse, channels,

Simulator and interrace toolkit
---~

Graphics Modules

Computational
Modules

(A oDCO
Earn

Simulation

Communications
modules

.... -----0001

CLinker

•

Simulator

=> __ ffi ~
ca ..

.... ;.::<::;:::;";::::,:::-:.<.,

\.< .. :· j~ : CQdK

Figure 2. Stages In Constructing A Simulation.

GENESIS: A System for Simulating Neural Net~orks 489

A B network

~
neuron! neuron2

~~
dendrite

\
cell-body

A
axon

Na K synapse

C

KEY

Element

Connection

dendrite -Link

D

Figure 3. Implementation of a two neuron model in GENESIS. (A) Schematic dia­
gram of compartmentally modeled neurons. Each cell in this simple model has a pas­
sive dendritic compartment, an active cell-body, and an output axon. There is a
synaptic input to the dendrite of one cell and two ionic channels on the cell body.
(B) Hierarchical representation of the components of the simulation as maintained in
GENESIS. The cell-body of neuron 1 is referred to as /network/neuronl/cell-body.
(C) A representation of the functional links between the basic components of one
neuron. (D) Sample interface control and display widgets created using the XODUS
toolkit.

490 Wilson, Bhalla, Uhley and Bower

dendritic compartments, cell body and axon are each treated as separate
computational elements (fig. 3C). Links allow elements to share information (e.g.
the Na channel needs to have access to the cell-body membrane voltage). Figure 4
shows a portion of the script used to construct this simulation.

Create different types or elements and assign them names.
create neuronl
create active compartment cell-body
create passive_compartment dendrite
create synapse dendrite/synapse

Establish functional "links" between the elements.
link dendrite to cell-body
link dendrite/synapse to dendrite

Set parameters associated with the elements.
set dendrit~ capacitance l.Oe-6

Make copies or entire element subtrees.
copy neuronl to neuron2

Establish "connections" between two elements.
connect neuronl/axon to neuron2/dendrite/ synapse

Set up a graph to monitor an element variable
graph neuronl/cell-body potential

Make a control panel with several control "widgets".
xform control
xdialo g nstep
xdialog dt
Xloggle Euler

set-nstep -default 200
set-dt -default 0.5
set-euler

Figure 4. Sample script commands for constructing a simulation (see fig. 3)

SIMULATOR SPECIFICATIONS

Memory requirements or GENESIS.

Currently. GENESIS consists of about 20,000 lines of simulator code and a similar
amount of graphics code, all written in C. The executable binaries take up about 1.5
Megabytes. A rough estimate of the amount of additional memory necessary for a
particular simulation can be calculated from the sizes and number of modules used
in a simulation. Typically, elements use around 100 bytes, connections 16 and
messages 20. Widgets use 5-20 Kbytes each.

GENESIS: A System for Simulating Neural Networks 491

Performance

The overall efficiency of the GENESIS system is highly simulation specific. To
consider briefly a specific case, the most sophisticated biologically based simulation
currently implemented under GENESIS, is a model of piriform (olfactory) cortex
(Wilson et al., 1986; Wilson and Bower, 1988; Wilson and Bower, 1989). This
simulation consists of neurons of four different types. Each neuron contains from
one to five compartments. Each compartment can contain several channels. On a
SUN 386i with 8 Mbytes of RAM. this simulation with 500 cells runs at I second
per time step.

Other models that have been implemented under GENESIS

The list of projects currently completed under GENESIS includes approximately ten
different simulations. These include models of the olfactory bulb (Bhalla et al.,
1988), the inferior olive (Lee and Bower, 1988). and a motor circuit in the
invertebrate sea slug Tritonia (Ryckebusch et aI., 1989)~ We have also built several
tutorials to allow students to explore compartmental biological models (Hodgkin
and Huxley, 1952), and Hopfield networks (Hopfield. 1982).

Access/use of GENESIS

GENESIS and XODUS will be made available at the cost of distribution to all
interested users. As described above, new user-defined modules can be linked into
the simulator to extend the system. Users are encouraged to support the continuing
development of this system by sending modules they develop to Caltech. These
will be reviewed and compiled into the overall system by GENESIS support staff.
We would also hope that users would send completed published simulations to the
GENESIS data base. This will provide others with an opportunity to observe the
behavior of a simulation first hand. A current listing of modules and full
simulations will be maintained and available through an electronic mail newsgroup.
Babel. Enquiries about the system should be sent to GENESIS@caltech.edu or
GENESIS@caltech.biblet.

Acknowledgments

We would like to thank Mark Nelson for his invaluable assistance in the
development of this system and specifically for his suggestions on the content of
this manuscript. We would also like to recognize Dave Bilitch. Wojtek Furmanski.
Christof Koch, innumerable Caltech students and the students of the 1988 MBL
summer course on Methods in Computational Neuroscience for their contributions
to the creation and evolution of GENESIS (not mutually exclusive). This research
was also supported by the NSF (EET-8700064). the NIH (BNS 22205). the ONR
(Contract NOOOI4-88-K-0513). the Lockheed Corporation. the Caltech Presidents
Fund, the JPL Directors Development Fund. and the Joseph Drown Foundation.

492 Wilson, Bhalla, Uhley and Bower

References

D. Anderson. (ed.) Neural information processing systems. American Institute of
Physics, New York (1988).

U.S. Bhalla, M.A. Wilson, & J.M. Bower. Integration of computer simulations
and multi-unit recording in the rat olfactory system. Soc. Neurosci. Abstr. 14:
1188 (1988).

I.M. Bower. Reverse engineering the nervous system: An anatomical, physiological,
and computer based approach. In: An Introduction to Neural and Electronic
Networks. Zornetzer, Davis, and Lau, editors. Academic Press (1989)(in press).

A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and
its application to conduction and excitation in nerve. I.Physiol, (Lond.) 117, 500-
544 (1952).

1.J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. USA. 79,2554-2558 (1982).

C. Koch and I. Segev. (eds.) Methods in Neuronal Modeling: From Synapses to
Networks. MIT Press, Cambridge, MA (in press).

M. Lee and I.M. Bower. A structural simulation of the inferior olivary nucleus.
Soc. Neurosci. Abstr. 14: 184 (1988).

M. Nelson, W. Furmanski and I.M. Bower. Simulating neurons and neuronal
networks on parallel computers. In: Methods in Neuronal Modeling: From Synapses
to Networks. C. Koch and I. Segev, editors. MIT Press, Cambridge, MA (1989)(in
press).

S. Ryckebusch, C. Mead and I.M. Bower. Modeling a central pattern generator in
software and hardware: Tritonia in sea moss (CMOS). (l989)(this volume).

D.E. Rumelhart, 1.L. McClelland and the PDP Research Group. Parallel Distributed
Processing. MIT Press, Cambridge, MA (1986).

D. Touretzky. (ed.) Advances in Neural Network Information Processing Systems.
Morgan Kaufmann Publishers, San Mateo, California (1989).

M.A. Wilson and I.M. Bower. The simulation of large-scale neuronal networks. In:
Methods in Neuronal Modeling: From Synapses to Networks. C. Koch and I. Segev,
editors. MIT Press, Cambridge, MA (1989)(in press).

M.A. Wilson and I.M. Bower. A computer simulation of olfactory cortex with
functional implications for storage and retrieval of olfactory information. In:
Neural information processing systems. pp. 114-126 D. Anderson, editor. Published
by AlP Press, New York, N.Y (1988).

M.A. Wilson, I.M. Bower and L.B. Haberly. A computer simulation of piriform
cortex. Soc. Neurosci. Abstr. 12.1358 (1986).

Part IV
Structured Networks

