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ABSTRACT 

Reconstructing a surface from sparse sensory data is a well-known 
problem iIi computer vision. This paper describes an experimental 
analog VLSI chip for smooth surface interpolation from sparse depth 
data. An eight-node ID network was designed in 3J.lm CMOS and 
successfully tested. The network minimizes a second-order or "thin­
plate" energy of the surface. The circuit directly implements the cou­
pled depth/slope model of surface reconstruction (Harris, 1987). In 
addition, this chip can provide Gaussian-like smoothing of images. 

INTRODUCTION 

Reconstructing a surface from sparse sensory data is a well-known problem in 
computer vision. Early vision modules typically supply sparse depth, orientation, 
and discontinuity information. The surface reconstruction module incorporates 
these sparse and possibly conflicting measurements of a surface into a consistent, 
dense depth map. 

The coupled depth/slope model provides a novel solution to the surface reconstruc­
tion problem (Harris, 1987). A ID version of this model has been implemented; 
fortunately, its extension to 2D is straightforward. Figure 1 depicts a high-level 
schematic of the circuit. The di voltages represent noisy and possibly sparse input 
data, the ZiS are the smooth output values, and the PiS are the explicitly computed 
slopes. The vertical data resistors (with conductance g) control the confidence in 
the input data. In the absence of data these resistors are open circuits. The 
horizontal chain of smoothness resistors of conductance ..\ forces the derivative of 
the data to be smooth. This model is called the coupled depth/slope model be­
cause of the coupling between the depth and slope representations provided by the 
subtractor elements. The subtractors explicitly calculate a slope representation 
of the surface. Any depth or slope node can be made into a constraint by fixing 
a voltage source to the proper location in the network. Intuitively, any sudden 
change in slope is smoothed out with the resistor mesh. 
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Figure 1. The coupled depth/slope model. 

The tri-directional subtractor device (shown in Figure 2) is responsible for the 
coupling between the depth and slope representations. If nodes A and B are set 
with ideal voltage sources, then node C will be forced to A - B by the device. This 
circuit element is unusual in that all of its terminals can act as inputs or outputs. 
If nodes Band C are held constant with voltage sources, then the A terminal is 
fixed to B + C. If A and C are input, then B becomes A - C. When further 
constraints are added, this device dissipates a power proportional to (A - B - C)2. 
In the limiting case of a continuous network, the total dissipated power is 

(1) 

The three terms arise from the power dissipated in the sub tractors and in the two 
different types of resistors. Energy minimization techniques and standard calculus 
of variations have been used to formally show that the reconstructed surfaces, z, 
satisfy the 1D biharmonic equation between input data points (Harris, 1987). In 
the tw~dimensional formulation, z is a solution of 

(2) 

This interpolant, therefore, provides the same results as minimizing the energy of 
a thin plate, which has been commonly used in surface reconstruction algorithms 
on digital computers (Grimson, 1981; Terzopoulos, 1983). 

IMPLEMENTATION 
The eight-node 1D network shown in Figure 1 was designed in 3J.lm CMOS (Mead, 
1988) and fabricated through MOSIS. Three important components of the model 
must be mapped to analog VLSI: the two different types of resistors and the sub­
tractors. The vertical confidence resistors are built with simple transconductance 
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Figure 2. Tri-directional subtract constraint device. 

amplifiers (transamps) connected as followers. The bias voltage of the transamp 
follower determines its conductance (g) and therefore signifies the certainty of 
the data. If there are no data for a given location, the corresponding transamp 
follower is turned off. The horizontal smoothness resistors are implemented with 
Mead's saturating resistor (Mead, 1988). Since conventional CMOS processes lack 
adequate resistive elements, we are forced to build resistors out of transistor el­
ements. The bias voltage for Mead's resistor allows the effective conductance of 
these circuit elements to vary over many orders of magnitude. 

The most difficult component to implement in analog VLSI is the subtract con­
straint device. Its construction led to a general theory of constraint boxes which 
can be used to implement all sorts of constraints which are useful in early vi­
sion (Harris, 1988). The implementation of the subtract constraint device is a 
straightforward application of constraint box theory. Figure 3 shows a generic n 
terminal constraint box enforcing a constraint F on its voltage terminals. The 
constraints are enforced by generating a feedback current lie for each constrained 
voltage terminal. Suppose F can be written as 

One possible feedback equation which implements this constraint is given by 

8F 
1.: = -F- (4) 

8Vl: 

When this particular choice of feedback current is used, the constraint box min­
imizes the least-squares error in the constraint equation (Harris, 1989). Notice 
that F can be scaled by any arbitrary scaling factor. This scaling factor and the 
capacitance at each node determine the speed of convergence of a single constraint 
box. 
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Figure 3. Generic n terminal constraint box. 

The subtract constraint box given in Figure 2 requires a constraint of A - B = C, 
which leads to the following error equation: 

F(A,B,C) = A- B - C (5) 

Straightforward application of constraint box theory yields 

8F 
-F 8A = -(A - B - C) 

1B -F~ = (A- B - C) (6) 

Ie - -F :~ = (A - B - C) 

where lA, IB , and Ie represent feedback currents that must be generated by the 
device. 

These current feedback equations can be implemented with two modified wide­
range transamps (see Figure 4). In its linear range, a single transamp produces 
a current proportional to the difference of its two inputs. The negative input 
to each transamp is indicated by an inverting circle. The transamps have been 
modified to produce four outputs, two positive and two negative. The negative 
outputs are also represented by inverting circles. Because the difference terminal 
C can be positive or negative, it is measured with respect to a voltage reference 
VREF. VREF is a global signal which defines zero slope. As seen in Figure 4, the 
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Figure 4. Tri-directional subtract constraint box. 

proper combination of positive and negative outputs from the two transamps are 
fed back to the voltage terminals to implement the feedback equations given in 
eq. (6). 

Analog networks which solve most regularizable early vision problems can be de­
signed with networks consisting solely of linear resistances and batteries (Poggio 
and Koch, 1985). Unfortunately, many times these networks contain negative re­
sistances that are troublesome to implement in analog VLSI. For example, the 
circuit shown in Figure 5 computes the same solutions as the coupled depth/slope 
network described in this paper. Interestingly, a 2-D implementation of this 
idea was implemented in the 1960s using inductors and capacitors (Volynskii and 
Bukhman, 1965). Proper choice of the frequency of alternating current allowed the 
circuit elements to act as pure positive and negative impedances. Unfortunately, 
negative resistances are troublesome to implement, especially in analog VLSI. 
One of the big advantages of using constraint boxes to implement early vision 
algorithms is that the resulting networks do not require negative resistances. 

ANALYSIS 

Figure 6 shows a sample output of the circuit. Data (indicated by vertical dashed 
lines) were supplied at nodes 2, 5, and 8. As expected, the chip finds a smooth 
solution (solid line) which extrapolates beyond the known data points. It is well­
known that a single resistive grid minimizes the first-order or membrane energy of 
a surface. Luo, Koch, and Mead (1988) have implemented a 48x48 resistive grid 
to perform surface interpolation. Figure 6 also shows the simulated performance 
of a first-order energy or membrane energy minimization. Data points are again 
supplied at nodes 2, 5, and 8. In contrast to the second-order chip results, the 
solution (dashed line) is much more jagged and does not extrapolate outside of 
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Figure 5. A negative-resistor resistor solution to the ID biharmonic equation. 
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Figure 6. Measured data from the second-order chip (solid line) and simulated 
first-order result ( dashed line). 
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Figure 7. Graphical comparison of ID analytic Green's functions for first-order 
(dashed line), second-order (dotted line) and Gaussian (solid line). 

the known data points (for example, see node 1). Interestingly, psychophysics 
experiments support the smoother interpolant used by the second-order coupled 
depth/slope chip (Grimson, 1981). Unlike the second-order network, the first­
order network is not rigid enough to incorporate either orientation constraints or 
orientation discontinuities (Terzopoulos, 1983). 

Image smoothing is a special case of surface interpolation where the data are 
given on a dense grid. The first-order network is a poor smoothing operator. 
A comparison of analytic Green's function of first and second-order networks is 
shown in Figure 7 (the first-order shown with a dashed line and the second­
order with a solid line). Note that the analytic Green's function of the second­
order network (solid line) and that of standard Gaussian convolution (dotted line) 
are nearly identical. This fact was pointed out by Poggio, Voorhees, and Yuille 
(1986), when they suggested the use of the second-order energy to regularize 
the edge detection problem. Gaussian convolution has been claimed by many 
authors to be the "optimal" smoothing operator and is commonly used as the 
first stage of edge detection. Though the second-order network can be used to 
smooth images, Gaussian convolution cannot be used to solve the more difficult 
problem of interpolating from sparse data points. 
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CONCLUSION 

Biharmonic surface interpolation has been successfully demonstrated in analog 
VLSI. To test true performance, we plan to combine a larger version of this chip 
with an analog stereo network. Work has already started on building the necessary 
circuitry for discontinuity detection during surface reconstruction. The Gaussian­
like smoothing effect of this network will be further explored through building a 
network with photoreceptors supplying dense data input. 
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