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A design for a fully analog version of a self-organizing feature map neural 
network has been completed. Several parts of this design are in fabrication. 
The feature map algorithm was modified to accommodate circuit solutions 
to the various computations required. Performance effects were measured 
by simulating the design as part of a frontend for a speech recognition 
system. Circuits are included to implement both activation computations and 
weight adaption 'or learning. External access to the analog weight values is 
provided to facilitate weight initialization, testing and static storage. This 
fully analog implementation requires an order of magnitude less area than 
a comparable digital/analog hybrid version developed earlier. 

INTRODUCTION 

This paper describes an analog version of a self-organizing feature map circuit. The design 
implements Kohonen's self-organizing feature map algorithm [Kohonen, 1988] with some 
modifications imposed by practical circuit limitations. The feature map algorithm automatically 
adapts connection weights to nodes in the network such that each node comes to represent a 
distinct class of features in the input space. The system also self-organizes such that neighboring 
nodes become responsive to similar input classes. The prototype circuit was fabricated in two 
parts (for testability); a 4 node, 4 input synaptic array, and a weight adaptation and refresh 
circuit. A functional simulator was used to measure the effects of design constraints. This 
simulator evolved with the design to the point that actual device characteristics and process 
statistics were incorporated. The feature map simulator was used as a front-end processor to 
a speech recognition system whose error rates were used to monitor the effects of parameter 
changes on performance. 

This design has evolved over the past two years from earlier experiments with a perceptron 
classifier [Raffel, 1987] and an earlier version of a self-organizing feature map circuit [Mann, 
1988]. The perceptron classifier used a connection matrix built with multiplying D / A converters 
to perform the product operation for the sum-of-products computation common to all neural 
network algorithms. The feature map circuit also used MDAC's to perform a more complicated 
calculation to realize a squared Euclidean distance measure. The weights were also stored 
digitally, but in a unary encoded format to simplify the weight adjustment operation. This circuit 
contained all of the control necessary to perform weight adaptation, except for selecting a 
maximum responder. 
The new feature map circuit described in this paper replaces the digital weight storage with 
dynamic analog charge storage on a capacitor. This paper will describe the circuitry and discuss 
problems associated with this approach to neural network implementations. 
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ALGORITHM DESCRIPTION 

The original Kohonen algorithm is based on a network topology such as shown in Figure 1. This 
illustrates a linear array of nodes, consistent with the hardware implementation being descnbed. 

Each node in the circuit computes a level of activity [Dj(t)] which indicates the similarity 
between the current input vector [Xi(t)] and its respective weight vector [Wij(t)]. Traditionally 
this would be the squared Euclidean distance given by the activation equation in the figure. If 
the inputs are normalized, a dot product operation can be substituted. The node most 
representative of the current input will be the one with the minimum or maximum output 
activity (classification), depending on which distance measure is used. The node number of the 
min.fmax. responder U·] then comes to represent that class of which the input is a member. 
If the network is still in its learning phase, an adaptation process is invoked. This process 
updates the weights of all the nodes lying within a prescribed neighborhood [NEjj·(t)] of the 
selected node. The weights are adjusted such that the distance between the input and weight 
vector is diminished. This is accomplished by decreasing the individual differences between each 
component pair of the two vectors. The rate of learningis controlled by the gain term [aCt)]. 
Both the neighborhood and gain terms decrease during the learning process, stopping when the 
gain term reaches O. 

The following strategy was selected for the circuit implementation. First, it was assumed that 
inputs are normalized, thereby permitting the simpler dot product operation to be adopted. 
Second, weight adjustments were reducedto a simple increment / decrement operation determined 
by the sign of the difference between the components of the input and weight vector. Both of 
these Simplifications were tested in the simulations described earlier and had negligible effects 
on overall performance as a speech vector quantizer. In addition, the prototype circuits of the 
analog weight version of the feature map vector quantizer do not include either the max. picker 
or the neighborhood operator. To date, a version of a max. picker has not yet been chosen, 
though many forms exist. The neighborhood operator was included in the previous version of 
this design, but was not repeated on this ftrst pass. 

HARDWARE DESCRIPTION 

SYNAPTIC ARRAY 

A transistor constitutes the basic synaptic connection used in this design. An analog input is 
represented by a voltage v(Xi) on the drain of the transistor. The weight is stored as charge 
q(Wij) on the gate of the transistor. If the gate voltage exceeds the maximum input voltage by 
an amount greater than the transistor threshold voltage, the device will be operating in the 
ohmic region. In this region the current [i(Dj)] through the transistor is proportional to the 
product of the input and weight voltages. This effectively computes one contribution to the dot 
product. By connecting many synapses to a single wire, current summing is performed, in 
accordance with Kirchofrs current law, producing the desired sum of products activity. 

Figure 2 shows the transistor current as a function of the input and weight voltages. These 
curves merely serve to demonstrate how a transistor operating in the ohmic region will 
approximate a product operation. 

As the input voltage begins to approach the saturation region of the transistor, the curves begin 
to bend over. For use in competitive learning networks, like the feature map algorithm, it is 
only important that the computation be monotonically increasing. These curves were the 
characteristics of the computation used in the simulations. The absolute values given for output 
current do not reflect those produced in the actual circuit. 
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• ACTIVATION : 

m 

Dj(l) = 2: (x,(I) - W'j(I))2 

i=1 

• CLASSIFICATION : 

j' = M!N(D,(I)) , 
• ADAPTATION : 

Figure 1. Description of Kohonen's original feature map algorithm using a 
linear array of nodes. 
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Figure 2. Typical T -V curves for a transistor operating in the ohmic region. 



742 Mann and Gilbert 

It should also be noted that there is no true zero weight; even the zero weight voltage 
contnbutes to the output current. But again, in a competitive network, it is only important that 
it contribute less than a higher weight value at that same input voltage. 

In short, neither small non-linearities nor offsets interfere with circuit operation if the synapse 
characteristic is monotonic with weight value and input. 

SYSTEM 

Figure 3 is a block diagram of the small four-node hardware prototype. The nodes are oriented 
horizontally, their outputs identified as 10 through 13 along the right-hand edge, representing the 
accumulated currents. The analog inputs [X3-XO] come in from the bottom and, traveling 
vertically, make connections with each node at the boxes identified as synapses. Each synapse 
performs its product operation between the analog weight stored at that node and the input 
potential. 

Along the top and left sides are the control circuits for accessing weight information. The two 
storage registers associated with each synapse are the control signals used to select the reading 
and writing of weights. Weights are accessed serially by connecting to a global read and write 
wire, W- and W + respectively. Besides the need for modification, the weights also drift with 
time, much like DRAM storage, and therefore must be refreshed periodically. This is also 
performed by the adaptation circuit that will be presented separately. 

Control is provided by having a single "1" bit circulating through the DRAM storage bits 
associated with each synapse. This process goes on continuously in the background after being 
initialized, in parallel with the activity calculations. If the circuit is not being trained, the 
adaptation circuit continues to refresh the existing weights. 

WEIGHT MODIFICATION & REFRESH 
A complete synapse, along with the current to voltage conversion circuit used to read the weight 
contents, is shown in Figure 4. The current synapse is approximately the size of two 6 tr~sistor 
static RAM bits. This approximation will be used to make synaptic population estimates from 
current SRAM design experience. The six transistors along the top of the synapse circuit are 
two, three-transistor dynamic RAM cells used to control access to weight contents. These are 
represented in Figure 3 as the two storage elements associated with each synapse and are used 
as descnbed earlier. 

READING THE WEIGHT 
The two serial, vertically oriented transistors in the synapse circuit are used to sense the stored 
weight value. The bottom (sensing) transistor's channel is modulated by the charge stored on 
the weight capacitor. The sensing transistor is selected through the binary state of the 3T 
DRAM bit immediately above it. These two transistors used for reading the weight are 
duplicated in the outpu~ circuit shown to the right of the synapse. The current produced in the 
global read wire through the sensing transistor, is set up in the cascode current mirror 
arrangement in the output circuit. A mirrored version of the current, leaving the right hand side 
of the cascode mirror, is established in the duplicate transistor pair. The gate of this transistor 
is controlled by the operational amplifier as shown, and must be equivalent to the weight valueat 
the connection being read, if the drains are both at the same potential. This is guaranteed by 
the cascode mirror arrangement selected, and is set by the minus input to the amplifier. 

WRITING THE WEIGHT 
The lone horizontal transistor at the bottom right comer of the synapse circuit is the weight 
access transistor. This connects the global write wire[W +] to the weight capacitor [Wij]. This 
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(581 x 320 microns) 
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Figure 3. A block diagram of the 4 x 4 synaptic array integrated circuit. 
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occurs whenever the DRAM element directly above it is holding a "1". When the access 
transistor is off, current leakage takes place, causing the voltage on the capacitor to drift with 
time. 

There are two requirements on the weight drift for our application; That drift rates be as slow 
as possible, and that they drift in a known direction, in our case, toward ground. This is true 
because the refresh mechanism always raises the voltage to the top of a quantized voltage bin. 

A cross-section of the access transistor in Figure 5 identifies the two major leakage components; 
reverse diode leakage to the grounded substrate (or p-well) [10], and subthreshold channel 
conduction to the global write wire[Id]. The reverse diode leakage current is proportional to 
the area of the diffusion while the channel conduction leakage is proportional to the channel 
W /L ratio. Maintaining a negative voltage drift can be accomplished by sizing the devices such 
that reverse diode leakage dominates the channel conduction. This however would degrade the 
overall storage performance, and hence the minimum refresh cycle time. This can be relaxed by 
the technique of holding the global write line at some low voltage during everything but write 
cycles. This then makes the average voltage seen across the channel less than the minimum 
weight voltage, always resulting in a net voltage drop. 

Also, these leakage currents are exponentially dependent on temperature and can be decreased 
by an order of magnitude with just 10's of degrees of cooling [SChwartz, 1988]. 

WEIGHT REPRESENTATION 
Weights, while analog, are restricted to discrete voltages. This permits the stored voltage to drift 
by a restricted amount (a bin), and still be refreshed to its original value. The drift rate just 
discussed, combined with the bin size (determined by the levels of quantization (i.e. 'of bins) and 
weight range (i.e. column height», determines the refresh cycle time. The refresh cycle time, 
in tum, determines how many synapses (or weights) can be served by a single adaptation circuit. 
This means that doubling the range of the weight voltage would permit either doubling the 
number of quantization levels or doubling the number of synapses served by one adaptation 
circuit. 

Weight adjustments during learning involve raising or lowering the current weight voltage to the 
bins immediately above or below the current bin. This constitutes a digital increment or 
decrement operation. 

ADAPTATION CIRCUITRY 
Weight adjustments are made based upon a comparison between the current weight value and 
the input voltage connected to that weight. But, as these two ranges are not coincident, the 
comparison is made between two binary values produced by parallel flash AID converters 
[Brown, 1987]. The two opposing AID converters in Figure 6, produce a 1-of-N code, used in 
the comparison. The converters are composed of two stages to conserve area. The fIrst stage 
performs a coarse conversion which in tum drives the upper and lower rails of the second stage 
converter. The selection logic decides which of the voltages among those in the second stage 
weight conversion circuit to route back on the global write wire [W +]. 
This conflguration provides an easy mechanism for setting the ranges on both the inputs and 
weights. This is accomplished merely by setting the desired maximum and minimum voltages 
desired on the respective conversion circuits ([Xmin,Xmax] [Wmin,Wmax]). 

TEST RESULTS 
Both circuits were fabricated in MOSIS. The synaptic array was fabricated in a 3 micron 2 metal 
CMOS process while the adaptation circuitry was fabricated in a similar 2 micron process. To 
date, only the synaptic array has been tested. In these tests, the input was restricted to a 0 to1 
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I 

Figure 5. Cross-sectional view of a weight access transistor with leakage 
currents. 
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Figure 6. Block diagram of the weight adaptation and refresh circuit. 
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V range while the weight range was 2 to 3 V. Most of these early tests were done with binary 
weights, either 2 V or 3 V, corresponding to a "O"and a "1". 

The synapses and associated control circuitry all work as expected. The circuit can be clocked 
up to 7 MHz. The curves shown in Figure 7 display a typical neuron output during two modes 
of operation; a set of four binary weights with all of the inputs swept together over their 
operating range, and a single, constant input with its weight being swept through its operating 
range. 

The graphs in Figure 8 show the temporal behavior of the weight voltage stored at a single 
synapse. On the left is plotted the output current to weight VOltage, for converting between the 
two quantities. The right hand plot is the output current of the synapse plotted against time. 
If the weight VOltage bin size is set to 15 m V (2V range, 128 bins), a 3 to 4 second refresh cycle 
time limit would be required. This is a very lenient constraint and may permit a much finer 
quantization than expected. 

The circuitry for reading the weights was tested and appears to be inoperative. The casco de 
mirror requires a very high potential at the p-channel sources which causes the circuit to latch 
up when the clocks are turned on. This circuit will be isolated and tested under static 
conditions. 

CONCLUSIONS 
In summary, a design for an analog version of a self- organizing feature map has been completed 
and prototype versions of the synaptic array and the adaptation circuitry have been fabricated. 
The devices are still undergoing testing and characterization, but the basic DRAM control and 
synaptic operation have been demonstrated. Simulations have provided the guidance on design 
choices. These have been instrumental in providing information on effects due to quantization, 
computational non-linearities, and process variations. The new design offers a significant 
increase in density over a digital/analog hybrid approach. The 84 pin standard frame package 
from MOSIS will accommodate more than 8000 synapses of from 6 to 8 bits accuracy. It 
appears that control modifications may offer even greater densities in future versions. 

This work was sponsored by the Department of the Air Force, and the Defense Advanced 
Research Projects Agency, the views expressed are those of the author and do not reflect the 
official policy or pOSition of the U.S. Government. 
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