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ABSTRACT 

This paper is concerced with the use of error back-propagation 
in phonetic classification. Our objective is to investigate the ba­
sic characteristics of back-propagation, and study how the frame­
work of multi-layer perceptrons can be exploited in phonetic recog­
nition. We explore issues such as integration of heterogeneous 
sources of information, conditioll~ that can affect performance of 
phonetic classification, internal representations, comparisons with 
traditional pattern classification techniques, comparisons of differ­
ent error metrics, and initialization of the network. Our investiga­
tion is performed within a set of experiments that attempts to rec­
ognize the 16 vowels in American English independent of speaker. 
Our results are comparable to human performance. 

Early approaches in phonetic recognition fall into two major extremes: heuristic 
and algorithmic. Both approaches have their own merits and shortcomings. The 
heuristic approach has the intuitive appeal that it focuses on the linguistic informa­
tion in the speech signal and exploits acoustic-phonetic knowledge. HO'fever, the 
weak control strategy used for utilizing our knowledge has been grossly inadequate. 
At the other extreme, the algorithmic approach relies primarily on the powerful con­
trol strategy offered by well-formulated pattern recognition techniques. However, 
relatively little is known about how our speech knowledge accumulated over the 
past few decades can be incorporated into the well-formulated algorithms. We feel 
that artificial neural networks (ANN) have some characteristics that can potentially 
enable them to bridge the gap between these two extremes. On the one hand, our 
speech knowledge can provide guidance to the structure and design of the network. 
On the other hand, the self-organizing mechanism of ANN can provide a control 
strategy for utilizing our knowledge. 

In this paper, we extend our earlier work on the use of artificial neural networks 
for phonetic recognition [2]. Specifically, we focus our investigation on the following 
sets of issues. First, we describe the use of the network to integrate heterogeneous 
sources of information. We will see how classification performance improves as more 
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information is available. Second, we discuss several important factors that can sub­
stantially affect the performance of phonetic classification. Third, we examine the 
internal representation of the network. Fourth, we compare the network with two 
traditional classification techniques: K-nearest neighbor and Gaussian classifica­
tion. Finally, we discuss our specific implementations of back-propagation that 
yield improved performance and more efficient learning time. 

EXPERIMENTS 

Our investigation is performed within the context of a set of experiments that 
attempts to recognize the 16 vowels in American English independent of speaker. 
The vowels are excised from continuous speech and they can be preceded and fol­
lowed by any phonemes, thus providing a rich environment to study contextual 
influence. We assume that the locations of the vowels have been detected. Given a 
time region, the network determines which one of the 16 vowels was spoken. 

CORPUS 

As Table 1 shows, our training set consists of 20,000 vowel tokens, excised from 
2,500 continuous sentences spoken by 500 male and female speakers. The test set 
consists of about 2,000 vowel tokens, excised from 250 sentences spoken by 50 dif­
ferent speakers. All the data are extracted from the TIMIT database, which has a 
wide range of American dialectical variations [1]. The speech signal is represented 
by spectral vectors obtained from an auditory model [4]. Speaker and energy nor­
malization are also performed [5]. 

Tokens Sentences Speakers (M/F) 
Training 20,000 2500 500 (350/150) 
Testing 2,000 250 50 (33/17) 

Table 1: Corpus extracted from the TIMIT database. 

NETWORK STRUCTURE 

The structure of the network we have examined most extensively has 1 hidden 
layer as shown in Figure 1. It has 16 output units, with one unit for each of the 16 
vowels. In order to capture dynamic information, the vowel region is divided into 
three equal subregions. An average spectrum is then computed in each subregion. 
These 3 average spectra are then applied to the first 3 sets of input units. Additional 
sources of information, such as duration and local phonetic contexts, can also be 
made available to the network. While spectral and durational inputs are continuous 
and numerical, the contextual inputs are discrete and symbolic. 
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Figure 1: Basic structure of the network. 

HETEROGENEOUS INFORMATION INTEGRATION 

In our earlier study, we have examined the integration of the Synchrony En­
velopes and the phonetic contexts [2]. The Synchrony Envelopes, an output of 
the auditory model, have been shown to enhance the formant information. In this 
study, we add additional sources of information. Figure 2 shows the performance 
as heterogeneous sources of information are made available to the network. The 
performance is about 60% when only the Synchrony Envelopes are available. The 
performance improves to 64% when the Mean Rate Response, a different output of 
the auditory model which has been shown to enhance the temporal aspects of the 
speech signal, is also available. We can also see that the performance improves con­
sistently to 77% as durational and contextual inputs are provided to the network. 
This experiment suggests that the network is able to make use of heterogeneous 
sources of information, which can be numerical and/or symbolic . 
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One may ask how well human listeners can recognize the vowels. Experiments 
have been performed to study how well human listeners agree with each other when 
they can only listen to sequences of 3 phonemes, i.e. the phoneme before the vowel, 
the vowel itself, and the phoneme after the vowel [3]. Results indicate that the 
average agreement among the listeners on the identities of the vowels is between 
65% and 70%. 
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Figure 2: Integration of heterogeneous sources of information. 

PERFORMANCE RESULTS 
We have seen that one of the important factors for the network performance 

is the amount of information available to the network. To gain additional insights 
about how the network performs under different conditions, several experiments 
were conducted using different databases. In these and the subsequent experiments 
we describe in this paper, only the Synchrony Envelopes are available to the network. 

Table 2 shows the performance results for several recognition tasks. In each 
of these tasks, the network is trained and tested with independent sets of speech 
data. The first task recognizes vowels spoken by one speaker and excised from the 
fbf-vowel-ftf environment, spoken in isolation. This recognition task is relatively 
straightforward, resulting in perfect performance. In the second experiment, vowel 
tokens are extracted from the same phonetic context, but spoken by 17 male and 
female speakers. Due to inter-speaker variability, the accuracy degrades to 86%. 
The third task recognizes vowels spoken by one speaker and excised from an un­
restricted context, spoken continuously. We can see that the accuracy decreases 
further to 70%. Finally, data from the TIM IT database are used, spoken by multi­
ple speakers. The accuracy drops to 60%. These results indicate that a substantial 
difference in performance can be expected under different conditions, depending on 
whether the task is speaker-independent, what is the restriction on the phonetic 
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Speakers(M/F) Context Training Percent Remark 
Tokens Correct 

1(1/0) b - t 64 100 isolated 
17(8/9) b - t 256 86 isolated 
1(1/0) * * 3,000 70 continuous 

500(350/150) * * 20,000 60 continuous -

Table 2: Performance for different tasks, using only the synchrony spectral infor­
mation. "*,, stands for any phonetic contexts. 

contexts, whether the speech material is spoken continuously, and how much data 
are used to train the network. 

INTERNAL REPRESENTATION 

To understand how the network makes use of the input information, we exam­
ined the connection weights of the network. A vector is formed by extracting the 
connections from all the hidden units to one output unit as shown in Figure 3a. The 
same process is repeated for all output units to obtain a total of 16 vectors. The 
correlations among these vectors are then examined by measuring the inner prod­
ucts or the angles between them. Figure 3b shows the distribution of the angles 
after the network is trained, as a function of the number of hidden units. The circles 
represent the mean of the distribution and the vertical bars stand for one standard 
deviation away from the mean. As the number of hidden units increases, the distri­
bution becomes more and more concentrated and the vectors become increasingly 
orthogonal to each other. 

The correlations of the connection weights before training were also examined, 
as shown in Figure 3c. Comparing parts (b) and (c) of Figure 3, we can see that 
the distributions before and after training overlap more and more as the number of 
hidden units increases. With 128 hidden units, the two distributions are actually 
quite similar. This leads us to suspect that perhaps the connection weights between 
the hidden and the output layer need not be trained if we have a sufficient number 
of hidden units. 

Figure 4a shows the performance of recognizing the 16 vowels using three differ­
ent techniques: (i) train all the connections in the network, (ii) fix the connections 
between the hidden and output layers after random initialization and train only 
the connections between the input and hidden layers, and (iii) fix the connections 
between the input and hidden layers and train only the connections between the 
hidden and output layers. We can see that with enough hidden units, training only 
the connections between the input and the hidden layers achieves almost the same 
performance as training all the connections in the network. We can also see that 
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for the same number of hidden units, training only the connections between the 
input and the hidden layer can achieve higher performance than training only the 
connections between the hidden and the output layer. 

Figure 4b compares the three training techniques for 8 vowels, resulting in 8 
output units only. We can see similar characteristics in both parts (a) and (b) of 
Figure 4. 
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Figure 3: (a) Correlations of the vectors from the hidden to output layers are 
examined. (b) Distribution of the angles between these vectors after training. (c) 
Distribution of the angles between these vectors before training. 

COMPARISONS WITH TRADITIONAL TECHNIQUES 
One of the appealing characteristics of back-propagation is that it does not as­

sume any probability distributions or distance metrics. To gain further insights, we 
compare with two traditional pattern classification techniques: K-nearest neighbor 
(KNN) and multi-dimensional Gaussian classifiers. 
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Figure 4: Performance of recognizing (a) 16 vowels, (b) 8 vowels when (i) all the 
connections in the network are trained, (ii) only the connections between the input 
and hidden layers are trained, and (iii) only the connections between the hidden 
and output layers are trained. 

Figure 5a compares the performance results of the network with those of KNN, 
for different amounts of training tokens. Again, only the Synchrony Envelopes 
are made available to the network, resulting in input vectors of 100 dimensions. 
Each cluster of crosses corresponds to performance results of ten networks, each 
one randomly initialized differently. Due to different initialization, a fluctuation of 
2% to 3% is observed even for the same training size. For comparison, we perform 
KNN using the Euclidean distance metric. For each training size, we run KNN 6 
times, each one with a different K, which is chosen to be proportional to the square 
root of the number of training tokens, N. For simplicity, Figure 5a shows results for 
only 3 different values of K: (i) K = Vii, (ii) K = 10Vii, and (iii) K = 1. In this 
experiment, we have found that the performance is the best when K = ..fFi and is 
the worst when K = 1. We have also found that up to 20,000 training tokens, the 
network consistently compares favorably to KNN. It is possible that the network is 
able to find its own distance metric to achieve better performance. 

Since the true underlying probability distribution is unknown, we assume multi­
dimensional Gaussian distribution in the second experiment. (i) We use the full 
covariance matrix, which has 100zl00 elements. To avoid problems with singularity, 
we obtain results only for large number of training tokens. (ii) We use the diagonal 
covariance matrix which has non-zero elements only along the diagonal. We can 
see from Figure 5b that the network compares favorably to the Gaussian classifiers. 
Our results also suggest that the Gaussian assumption is invalid. 
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Figure 5: (a) Comparison with KNN for different values of K (See text). (b) 
Comparison with Gaussian classification when using the (i) full covariance matrix, 
and (ii) diagonal covariance matrix. Each cluster of 10 crosses corresponds to the 
results of 10 different networks, each one randomly initialized. 

ERROR METRIC AND INITIALIZATION 

In order to take into account the classification performance of the network more 
explicitly, we have introduced a weighted mean square error metric [2]. By modu­
lating the mean square error with weighting factors that depend on the classifica­
tion performance, we have shown that the rank order statistics can be improved. 
Like simulated annealing, gradient descent takes relatively big steps when the per­
formance is poor, and takes smaller and smaller steps as the performance of the 
network improves. 

Results also indicate that it is more likely for a unit output to be initially in the 
saturation regions of the sigmoid function if the network is randomly initialized. 
This is not desirable since learning is slow when a unit output is in a saturation 
region. Let the sigmoid function goes from -1 to 1. If the connection weights 
between the input and the hidden layers are initialized with zero weights, then all 
the hidden unit outputs in the network will initially be zero, which in turn results in 
zero output values for all the output units. In other words, all the units will initially 
operate at the center of the transition region of the sigmoid function, where learning 
is the fastest. We call this method center initialization (CI). 

Parts (a) and (b) of Figure 6 compare the learning speed and performance, 
respectively, of the 3 different techniques: (i) mean square error (MSE), (ii) weighted 
mean square error (WMSE), and (iii) center initialization (CI) with WMSE. We can 
see that both WMSE and CI seem to be effective in improving the learning time 
and the performance of the network. 
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Figure 6: Comparisons of the (a) learning characteristics and, (b) performance 
results, for the 3 different techniques: (i) MSE, (ii) WMSE, and (iii) CI with WMSE. 
Each point corresponds to the average of 10 different networks, each one initialized 
randomly. 

SUMMARY 
In summary, we have described a set of experiments that were designed to help 

us get a better understanding of the use of back-propagation in phonetic classifica­
tion. Our results are encouraging and we are hopeful that artificial neural networks 
may provide an effective framework for utilizing our acoustic-phonetic knowledge 
in speech recognition. 
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