
116

THE BOLTZMANN PERCEPTRON NETWORK:
A MULTI-LAYERED FEED-FORWARD NETWORK

EQUIVALENT TO THE BOLTZMANN MACHINE

Eyal Yair and Allen Gersho

Center for Infonnation Processing Research
Department of Electrical & Computer Engineering

University of California, Santa Barbara, CA 93106

ABSTRACT
The concept of the stochastic Boltzmann machine (BM) is auractive for
decision making and pattern classification purposes since the probability of
attaining the network states is a function of the network energy. Hence, the
probability of attaining particular energy minima may be associated with the
probabilities of making certain decisions (or classifications). However,
because of its stochastic nature, the complexity of the BM is fairly high and
therefore such networks are not very likely to be used in practice. In this
paper we suggest a way to alleviate this drawback by converting the sto­
chastic BM into a deterministic network which we call the Boltzmann Per­
ceptron Network (BPN). The BPN is functionally equivalent to the BM but
has a feed-forward structure and low complexity. No annealing is required.
The conditions under which such a convmion is feasible are given. A
learning algorithm for the BPN based on the conjugate gradient method is
also provided which is somewhat akin to the backpropagation algorithm.

INTRODUCTION
In decision-making applications, it is desirable to have a network which computes the pro­
babilities of deciding upon each of M possible propositions for any given input pattern. In
principle, the Boltzmann machine (BM) (Hinton, Sejnowski and Ackley, 1984) can provide
such a capability. The network is composed of a set of binary units connected through sym­
metric connection links. The units are randomly and asynchronously changing their values
in (O.l) according to a stochastic transition rule. The transition rule used by Hinton et. al.
defines the probability of a unit to be in the 'on' state as the logistic function of the energy
change resulting by changing the value of that unit. The BM can be described by an
ergodic Markov chain in which the thermal equilibrium probability of attaining each state
obeys the Boltzmann distribution which is a function of only the energy. By associating the
set of possible propositions with subsets of network states, the probability of deciding upon
each of these propositions can be measured by the probability of attaining the correspond­
ing set of states. This probability is also affected by the temperature. As the temperature

This work was supported by the Weizrnann Foundation for lCientific resean:h. by the
University of California MICRO program. and by Ben Communications Relearch. Inc.

The Boltzmann Perceptron Network 11 7

increases, the Boltzmann probability distribution become more uniform and thus the deci­
sion made is 'vague'. The lower the temperature the greater is the probability of attaining
states with lower energy thereby leading to more 'distinctive' decisions.

This approach, while very attractive in principle, has two major drawbacks which make the
complexity of the computations become non-feasible for nontrivial problems. The first is
the need for thermal equilibrium in order to obtain the Boltzmann distribution. To make
distinctive decisions a low temperature is required. This implies slower convergence
towards thermal eqUilibrium. GeneralJy, the method used to reach thermal equilibrium is
simulated annealing (SA) (Kirkpatrick et. al., 1983) in which the temperature starts from a
high value and is gradualJy reduced to the desired final value. In order to avoid 'freezing'
of the network, the cooling schedule should be fairly slow. SA is thus time consuming and
computationally expensive. The second drawback is due to the stochastic nature of the com­
putation. Since the network state is a random vector, the desired probabilities have to be
estimated by accumulating statistics of the network behavior for only a finite period of
time. Hence, a trade-off between speed and accuracy is unavoidable.

In this paper, we propose a mechanism to alleviate the above computational drawbacks by
converting the stochastic BM into a functionally equivalent deterministic network, which
we call the Boltzmann Perceptron Network (BPN). The BPN circumvents the need for a
Monte Carlo type of computation and instead evaluates the desired probabilities using a
multilayer perceptron-like network. The very time consuming learning process for the BM
is similarly replaced by a deterministic learning scheme, somewhat akin to the backpropa­
galion algorithm. which is computationally affordable. The similarity between the learning
algorithm of a BM having a layered structure and that of a two-layer perceptron has been
recently pointed out by Hopfield (1987). In this paper we further elaborate on such an
equivalence between the BM and the new perceptron-like network, and give the conditions
under which the conversion of the stochastic BM into the deterministic BPN is possible.
Unlike the original BM, the BPN is virtually always in thermal equilibrium and thus SA is
no longer required. Nevertheless, the temperature still plays the same role and thus varying
it may be beneficial to control the 'sofmess' of the decisions made by the BPN. Using the
BPN as a soft classifier is described in details in (Yair and Gersho, 1989).

THE BOLTZMANN PERCEPTRON NETWORK
Suppose we have a network of K units connected through symmetric connection links with
no self-feedback, so that the connection matrix r is symmetric and zero-diagonal. Let us
categorize the units into three different types: input, output and hidden units. The input
pattern will be supplied to the network by clamping the input units, denoted by
~ = (x It ••• x; •..• XI f, with this pattern. ~ is a real-valued vector in RI. The output of the net­
work will be observed on the output units 1= (y It .. ,Y,,, , •. ,YM)T, which is a binary vector.
The remaining units. denoted y=(vt> .. ,Vj,,,,vJ)T. are the hidden units, which are also
binary-valued. The hidden and output units are asynchronously and randomly changing
their binary values in (O,I) according to inputs they receive from other units.

The state of the network will be denoted by the vector y which is partitioned as follows:
II =(~T,yT,IT). The energy associated with state y is denoted by EN and is given by:

(1)

where ~ is a vector of bias values. partitioned to comply with the partition of 11 as follows:
~T = (f.~T,fl).

118 Yair and Gersho

The transition from one state to another is perfonned by selecting each time one unit, say
unit k. at random and detennine its output value according to the following stochastic rule:
set the output of the unit to 1 with probability Pl:, and to 0 with a probability 1-Pl: . The
parameter Pl: is detennined locally by the k -th unit as a function of the energy change ~l:
in the following fashion:

~ 1
Pl:=g(~l:) , g(x) = 1 -lIx (2)

+e

~l: = (E" (unit k is off) - E,,(unit k is on)), and p = liT is a control parameter. T is called
the temperature and g (.) is the logistic function. With this transition rule the thennal equili­
brium probability P" of attaining a state .u. obeys the Boltzmann distribution:

1 -liE
PIC = - e • (3)

Zx

where Zx, called the partition junction. is a nonnalization factCX' (independent of y and i)
such that the sum of P" over all the 2' +M possible states will sum to unity.

In order to use the network in a detenninistic fashion rather than accumulate statistics while
observing its random behavior. we should be able to explicitly compute the probability of
attaining a certain vector I on the output units while K is clamped on the input units. This
probability. denoted by P y Ix • can be expressed as:

P ~ P 1 ~ -liE""",
y Ix = ~ ".y Ix = 7 ~ e

YEB] ~ yeB]

(4)

where B J is the set of all binary vectors of length J • and v.y I x denotes a state II in which
a specific input vector K is clamped. The explicit evaluation of the desired probabilities
therefore involves the computation of the partition function for which the number of opera­
tions grows exponentially with the number of units. That is. , the complexity is 0 (2'+M).
Obviously. this is computationally unacceptable. Nevertheless. we shall see that under a
certain restriction on the connection matrix r the explicit computation of the desired proba­
bilities becomes possible with a complexity of 0 (1M) which is computationally feasible.

Let us assume that for each input pattern we have M possible propositions which are asso­
ciated with the M output vectors: 1M = (11 •.. J". •.. J.v) • where L is the m-th column of the
MxM identity matrix. Any state of the network having output vector I=L (for any m)
will be denoted by v,m I x and will be called a feasible state. All other state vectors v .y I x
for 1* L will be considered as intennediate steps between two feasible states. This
redefinition of the network states is equivalent to redefining the states of the underlying
Markov model of the network and thus conserves the equilibrium Boltzmann distribution.
The probability of proposition m for a given input K. denoted by P 1ft Ix. will be taken as the
probability of obtaining output vector 1= L given that the output is one of the feasible
values. That is.

P 1ft Ix = Pr (I = L I K • IEIM) (5)

which can be computed from (4) by restricting the state space to the 2' M feasible state
vectors and by setting 1= L . The partition function. conditioned on restricting I to lie in
the set of feasible oUtputs,IM. is denoted by ~ and is given by:

(6)

The Boltzmann Perceptron Network 119

Let us now partition the connection matrix r to comply with the partition of the state vec­
tor and rewrite the energy for the feasible state V.ln I x as:

-E.,,,,lx = yT(Rx+QL +~D2Y+~ + !!(WK+~D:J". +1.) + KT(~Dl:1+I). (7)

Since X is clamped on the input units. the last tenn in the energy expression serves only as
a bias tenn for the energy which is independent of the binary units y and X. Therefore.
without any loss of generality it may be assumed that D1 = 0 and l.. = Q • The second tenn,
denoted by T", Ix • can be simplified since D3 has a zero diagonal. Hence.

I

T",lx = L Willi Xi + S",
i=1

(8)

The absence of the matrix D3 in the energy expression means that interconnections between
output units have no effect on the probability of attaining output vectors Xe1M. and may be
assumed absent without any loss of generality.

Defining L", W to be:

(9)

in which q", is the m -th column of Q. the desired probabilities. P", Ix. for m=l M are
obtained using (4) and (7) as a function of these quantities as follows:

1 '00 M L,.oo
P",lx = -=- e-'" with: ~ = L e (10)

~ "'~
The complexity of evaluating the desired probabilities P", Ix is still exponential with the
number of hidden units J due to the sum in (9). However. if we impose the restriction that
D2 = O. namely. the hidden units are not directly interconnected. then this sum becomes
separable in the components Vj and thus can be decomposed into the product of only J
tenns. This restricted connectivity of course imposes some restrictions on the capability of
the network compared to that of a fully connected network. On the other hand. it allows the
computation of the desired probabilities in a deterministic way with the attractive complex­
ity of only 0 (JM) operations. The tedious estimation of conditional expectations com­
monly required by the learning algorithm for a BM and the annealing procedure are
avoided. and an accurate and computationally affordable scheme becomes possible. We thus
suggest a trade-off in which the operation and learning of the BM are tremendously
simplified and the exact decision probabilities are computed (rather than their statistical
estimates) at the expense of a restricted connectivity. namely. no interconnections are
allowed between the hidden units. Hence. in our scheme. the connection matrix. r.
becomes zero block-diagonal. meaning that the network has connections only between units
of different categories. This structure is shown schematically in Figure 1.

Figure 1. Schematic architecture of
the stochastic BM.

x
MLP -----4~ Soft

Competition p
trt/~

Figure 2. Block diagram of the COlTespondjng
detenninistic BPN.

120 Yair and Gersho

By applying the property D2=0 to (9). the sum over the space of hidden units. which can
be explicitly written as the sum over all the J components of y. can be decomposed using
the separability of the different Vj components into a sum of only J tenns as follows:

J

Lift 00 = ~T 1ft b: + ~ I (V; I X) (11a)

where: and (llb)

I (-) is called the activation function. Note that as ~ is increased I (-) approaches the linear
threshold function in which a zero response is obtained for a negative input and a linear
one (with slope ~) for a positive inpuL

Finally. the desired probabilities P 1ft Ix can be expressed as a function of the Lift 00
(m=I •..• M) in an expression which can be regarded as the generalization of the logistic
function to M inputs:

P 1ft Ix = [1 + f e _L...,IIw]-l
11=1

""'"

where: . (12)

Eqs. (8) and (11) describe a two-layer feed-forward perceptron-like subnetwork which uses
the nonlinearity 10. It evaluates the quantity Lift 00 which we call the score of the m-th
proposition. Eq. (12) describes a competition between the scores Lift 00 generated by the M
subnetworks (m=I •..• M) which we call a solt competition with lateral inhibition. That is. If
several scores receive relatively high values compared to the others. they will share. accord­
ing to their relative strengths. the total amount (unity) of probability. while inhibiting the
remaining probabilities to approach zero. For example. if one of the scores. say Lloo, is
large compared to all the other scores. then the exponentiation of the pairwise score
differences will result in Pllx =1 while the remaining probabilities will approach zero.
Specifically. for any n#C. Plllx= exp (-Ll ,IIoo). which is essentially zero if Lloo is
sufficiently high. In other words. by being large compared to the others, Ll W won the
competition so that the corresponding probability P II x approaches unity, while all the
remaining probabilities have been attenuated by the high value of Ll W to approach zero.

Let us examine the effect of the gain ~ on this competition. When ~ is increased. the slope
of the activation function I (-) is increased thereby accentuating the differences between the
M contenders. In the limit when ~~. one of the Lift W will always be sufficiently large
compared to the others. and thus only one proposition will win. The competition then
becomes a winner-take-all competition. In this case, the network becomes a maximum a
posteriori (MAP) decision scheme in which the Lift W play the role of nonlinear discrim­
inant functions and the most probable proposition for the given input pattern is chosen:

P l1x =1 for k=argmax{Llftool and Plllx=O for n~k. (13)
1ft

This results coincides with our earlier observation that the temperature controls the 'soft­
ness' of the decision. The lower the temperature. the 'harder' is the competition and the
more distinctive are the decisions. However. in contrast to the stochastic network, there is
no need to gradually 'cool' the network to achieve a desired (low) temperature. Any
desired value of ~ is directly applicable in the BPN scheme. The above notion of soft com­
petition has its merits in a wider scope of applications apart from its role in the BPN
classifier. In many competitive schemes a soft competition between a set of contenders has

The Boltzmann Perceptron Network 121

a substantial benefit in comparison to the winner-lake-all paradigm. The above competition
scheme which can be implemented by a two-layer feed-forward network thus offers a valu­
able scheme for such purposes.

The block diagram of the BPN is depicted in Figure 2. The BPN is thus a four-layer feed­
forward deterministic network. It is comprised of a two-layer perceptron-like network fol­
lowed by a two-layer competition network. The competition can be • hard • (winner-ta1ce-all)
or 'soft' (graded decision) and is governed by a single gain parameter ~.

THE LEARNING ALGORITHM
Let us denote the BPN output by the M -dimensional probability vector lx. where:
lx = (P 11% ••• ,P '" 1% ••• ,P iii I%)T. For any given set of weights D. the BPN realizes some deter­
ministic mapping'll: RI -+ [O.I:f so that lx = '¥W. The objective of learning is to
detennine the mapping 'II (by estimating the set of parameters ID which 'best' explains a
finite set of examples given from the desired mapping and are called the training set. The
training set is specified by a set of N patterns (~lt .. .L •.. ~) (denoted for simplicity by
(~ }). the a priori probability for each training pattern ~: Q W. and the desired mapping

for each pattern x: Ox = (Q 11% •••• Q'" 1% •••• QIiI 1% l. where Q", 1% =Pr (proposition m I I) is the
desired probability. For each input pattern presented to the BPN. the actual output probabil­
ity vector lx is. in general. different from the desired one, Ox. We denote by G% the dis­
tortion between the actual ~ and the desired Ox for an input pattern ~. Thus. our task is to
determine the network weights (and the bias values) D so that, on the average, the distortion
over the whole set of training patterns will be minimized. Adopting the original distortion
measure suggested for Boltzmann machines, the average distortion, GOO, is given by:

M

G%OO = L Q",I% In[Q", 1% I p",I%<ID1 (14)

which is always non-negative since ~ and Ox are probability vectors. To minimize G <ID a
gradient based minimization search is used. Specifically, a Partial Conjugate Gradient
(pcG) search (Fletcher and Reeves, 1964; Luenberger, 1984) was found to be significantly
more efficient than the ordinary steepest descent approach which is so widely used in mul­
tilayer perceptrons. A further discussion supporting this finding is given in (Yair and
Gersho. 1989). For each set of weights we thus have to be able to compute the gradient
&= Ve G of the cost function GOO. Let us denote the components of the 'instantaneous'
gradient by G!I%=oo% los"" G:':'%=oG% loqjm' G; l%=oG% 10cj. G:'/%=OO% lOw,,",
G~I%=oG% lorji. To get the full gradient, the instantaneous components should be accurnu­
taied while the input patterns are presented (one at a time) to the network. until one full
cycle through the whole training set is completed.

It is straightforward to show that the gradient may be evaluated in a recursive manner. in a
fashion somewhat similar to the evaluation of the gradient by the backpropagation algo­
rithm used for feed-forward networks (Rumelhart et. al., 1986). The evaluation of the gra­
dient is accomplished by propagating the errors e", 1% = Q", 1% - P '" 1% through a linear net­
work, termed the Error Propagation Network (EPN), as follows:

G:b = Xi G!I%
M

G~I%= ~ G~I%
J ~ "" ",=1

G"I% = x. GC 1%
ji I j

(15)

The only new variables required are the b;I%. given by b;I%=g(V7 1%). which can be

122 Yair and Gersho

easily obtained by applying the logistic nonlinearity to V; 1%. The above error propagation
scheme can also be written in a matrix form. Let us define the following notation:
L = (e 11% ellll% ... ,eM I%)T. E% will be a diagonal M xM matrix whose diagonal is L.
Bx = [b~ IX]. a J xM matrix. Let .Lv denote a column vector of length M whose com­
ponents' are alII's. Similarly we will define the vectors: GAI % = (... G:b ...)T. and the
matrices: GAI % = [G~X] with the appropriate dimensions (for any A.. E and 1'\). Hence. the
error propagation can be written as:

G6b = -~L , Gwlx = G61% x.T

Gf 1% = _~ B% E% : GC 1% = Gf 1%.Lv • Gr 1% = fic 1% ~T (16)

The EPN is depicted in Figure 3. This is a linear system composed of inner and outer pro­
ducts between matrices. which can be efficiently implemented using a neural network. The
gradient I is used in the PCG update formula in which a new set of weights is created and
is used for the next update iteration. The learning scheme of the BPN is given in Figure 4.

Diag
left right
Bx ·1M

right

G$/%
IT

GW /% Gq/lC GqX Gr/ll

Figure 3. The mar Propagation Network (EPN). 'Diag' is

a diagooalization operator. 'right' and 1efi' are
right and left multipliel'l, respectively.

Figure 4. The learning scheme. The BPN outputs, ~lC , are

compared with the desired probabilities, 9% . The resulted
errors,!% ,propagate through the EPN to form the gradient

I which is used in the PCG alg. to create the DeW weights.

SIMULATION RESULTS
We now present several simulation results of two-class classification problems with Gaus­
sian sources. That is. we have two propositions represented by class 0 or class 1. Suppose
there are L random sources (i = 1 ... ,1..) over the input space. some of them are attributed to
class O. and the others to class 1. Each time. a source is chosen according to an a priori
probability P (i). When chosen. the i -th source then emits a pattern ~ according to a proba­
bility density Q% Ii 00. Measuring a pattern X. it is desired to decide upon the most probable
origin class - in the binary decision problem (MAP classifier). or obtain some estimate to
Q 11%. the probability that class 1 emitted this pattern - in the soft classification problem. In
the learning phase. a training set of size N was presented to the network. and the weights
were iteratively modified by the learning scheme (Figure 4) until convergence. The final
weights were used to construct a BPN classifier. which was then tested for new input pat­
terns. The output classification probability of the BPN. P lI%oo. was compared with the
true (Bayesian) conditional probability. QlI%W which was computed analytically. Results
are shown in Figures 5-7. In Figure 5. two symmetric equi-probable Gaussian sources with
substantial overlap were used. one for each class. The network was trained on N = 8 pat­
terns with gain p= 1. Figure 5b shows how the BPN performs for the problem given in Fig­
ure Sa. For p = 1. Le .• when the same gain is used in both the training and classification
phases. there is an almost perfect match between the BPN output. P 11% (x). denoted in the
figures by 'p = 1'. and the true curve. Q 11% (x). For p = 10. the high gain winner-lake-all

The Boltzmann Perceptron Network 123

>-

competition is taking place and the classifier becomes, practically, a binary (yes/no) deci­
sion network. In Fig. 6 disconnected decision regions were fonned by using four sources,
two of which were attributed to each class. Again, a nearly perfect match can be seen
between actual (P = 1) and desired (Q liz) outputs. Also, the simplicity of making 'hard'
classification decisions by increasing the gain is again illustrated (p= 10). In Fig. 7 the
classifier was required to find the boundary (expressed by QlIz =0.5) between two 2D
classes.

(5.a) (S.a) 10 (7.a)
.... 0 .3
'iii

>- D."
I

/
C
C»

'iii
c

I

\ ,
'1:1
>-
;:: D.2

I class 0 I ~ 0.3

>-

== :0
cs
.0

t 0 .1
/

/

/

/ :0 0.2 .,
.0 o ...
0. 0.1

Q-tl

/ "'
/ \

I /

/
I

D.O l-I-oc::I::..J....I....J....L.J.....I--'--'L...J.....L...I..::.......,.ol...J Ouu~~~~uu~~~~u

III
III .,
U

-" -2 0 2

input pattern - x

..
'" .,

-10 0 10
input pattern - x

8

o 2 " 8 8 10

(7.b)

PI - 0.5

... D.6
u
... 0 .6
o

4
o
.0 e
0.

J=l

~
0. 2

J=6

0 .0 L....,j"A-.L....J.--L.......I..-Io......o..L.L.J.--'--'--1o....J D L...J.....J....I..J....L.&-I...J

o -6 0 6 10 0 2 4 8

input pattern - x input pattern - x

Figure 5. Figure 6. Figure 7.

Figure S: Classification for Gaussian sources. (S.a) The two sources. (S.b) 'Soft' ~= 1) and 'hard'
~ = 10) classifications versus Q 11". J indicates the nwnber of hidden units used.
Figure 6: Classification for disconnected decision regions. (6.a) The sources used: dashed lines indi­
cate class 0 and solid lines - class 1. (6.b) Soft (p= 1) and hard (P= 10) classifications versus Q11,,'

Figure 7: Classification in a 2D space. (7.a) The two classes and the true boundary indicated by
QII" =0.5. (7.b) The boundary found by the BPN, marked by P II" =0.5, versus the true one.

References
Fletcher, R., Reeves. C.M. (1964). Function minimizatioo by conjugate gradienu. Complll" J., 7, 149-154.
Hinton, G.E., Sejnowlki T .R., & Ackley D.H. (1984). Boltmwm machines: constraint satiJfaction networks that

learn. CarMgi.-MeJQII T'CMicaJ R,port, CMU-CS-84-U9.
Hopfield, 1.1. (1987). Learning algoritJuns IDd probability distributions in feed-forward IDd feed-back networks.

Proc. Nail. Acad. Sci. USA, 84, 8429-8433.
Kirk~trick, S., Gelatt, C.D., & Vecchi M.P. (1983). Optimization by simulated annealing. Sci'N:', 220, 61l-680.
Luenberger, D.G. (1984). LiMar aNi lIOn/war programming, AddiJon-Wesley, Reading, Man.
Rumelhart, D.E., Hinton, G.E., & Williams RJ. (1986). Learning internal representations by enor propagatioo. In

D.E. Rumelhart & 1.1- McOelland (Eds.), ptJTtJIJeJ Distriblll,d Procus;"g., MIT Press/Brad{ord Books.
Yair, E., & Gersho, A. (1989). The Bollmlann perecpcron network: a soft clusifier. Submitted to the JOIITJfQI of

N'lII'aJ N'tworb, December, 1988.

I

