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ABSTRACT 

Parallelizable optimization techniques are applied to the problem of 
learning in feedforward neural networks. In addition to having supe­
rior convergence properties, optimization techniques such as the Polak­
Ribiere method are also significantly more efficient than the Back­
propagation algorithm. These results are based on experiments per­
formed on small boolean learning problems and the noisy real-valued 
learning problem of hand-written character recognition. 

1 INTRODUCTION 

The problem of learning in feedforward neural networks has received a great deal 
of attention recently because of the ability of these networks to represent seemingly 
complex mappings in an efficient parallel architecture. This learning problem can 
be characterized as an optimization problem, but it is unique in several respects. 
Function evaluation is very expensive. However, because the underlying network is 
parallel in nature, this evaluation is easily parallelizable. In this paper, we describe 
the network learning problem in a numerical framework and investigate parallel 
algorithms for its solution. Specifically, we compare the performance of several 
parallelizable optimization techniques to the standard Back-propagation algorithm. 
Experimental results show the clear superiority of the numerical techniques. 

2 NEURAL NETWORKS 

A neural network is characterized by its architecture, its node functions, and its 
interconnection weights. In a learning problem, the first two of these are fixed, so 
that the weight values are the only free parameters in the system. when we talk 
about "weight space" we refer to the parameter space defined by the weights in a 
network, thus a "weight vector" w is a vector or a point in weightspace which defines 
the values of each weight in the network. We will usually index the components of 
a weight vector as Wij, meaning the weight value on the connection from unit i to 
unit j. Thus N(w, r), a network function with n output units, is an n-dimensional 
vector-valued function defined for any weight vector wand any input vector r: 

N( w, r) = [Ol(W, r), D2(w, r), ... , on(w, r)f 
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where 0. is the ith output unit of the network. Any node j in the network has input 
ij(w,r) = E'efanin; o.(w,r)wij and output oj(w,r) ;: I;(ij(w,r», where 1;0 is 
the node function. The evaluation of NO is inherently parallel and the time to 
evaluate NO on a single input vector is O(#layers). If pipelining is used, multiple 
input vectors can be evaluated in constant time. 

3 LEARNING 

The "learning" problem for a neural network refers to the problem of finding a 
network function which approximates some desired "target" function TO, defined 
over the same set of input vectors as the network function. The problem is simplified 
by asking that the network function match the target function on only a finite set of 
input vectors, the "training set" R. This is usually done with an error measure. The 
most common measure is sum-squared error, which we use to define the "instance 
error" between N(w, r) and T(r) at weight vector wand input vector r: 

eN,T(w, r) = E ! (Ta(r) - o.(w, r»2 = !IIT(r) - N(w, r)1I2. 
ieoutputs 

We can now define the "error function" between NO and TO over R as a function 
ofw: 

EN,T,R(w) = I: eN,T(w, r). 
reR 

The learning problem is thus reduced to finding a w for which EN T R(w) is min-, , 
imized. If this minimum value is zero then the network function approximates the 
target function exactly on all input vectors in the training set. Henceforth, for no­
tational simplicity we will write eO and EO rather than eN TO and EN T RO. 

, .» , 

4 OPTIMIZATION TECHNIQUES 

As we have framed it here, the learning problem is a classic problem in optimization. 
More specifically, network learning is a problem of function approximation, where 
the approximating function is a finite parameter-based system. The goal is to find 
a set of parameter values which minimizes a cost function, which in this case, is a 
measure of the error between the target function and the approximating function. 

Among the optimization algorithms that can be used to solve this type of problem, 
gradient-based algorithms have proven to be effective in a variety of applications 
{Avriel, 1976}. These algorithms are iterative in nature, thus Wk is the weight 
vector at the kth iteration. Each iteration is characterized by a search direction dk 
and a step ak. The weight vector is updated by taking a step in the search direction 
as below: 

tor(k=o; evaluate(wk) != CONVERGED; ++k) { 

dk = determine-.eearch_directionO; 
ak = determine-.etepO; 
Wk+l = wit; + akdk ; 

} 
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If dk is a direction of descent I such as the negative of the gradient, a sufficiently 
small step will reduce the value of EO. Optimization algorithms vary in the way 
they determine Q and d, but otherwise they are structured as above. 

5 CONVERGENCE CRITERION 

The choice of convergence criterion is important. An algorithm must terminate 
when EO has been sufficiently minimized. This may be done with a threshold on 
the value of EO, but this alone is not sufficient. In the case where the error surface 
contains "bad" local minima, it is possible that the error threshold will be unattain­
able, and in this case the algorithm will never terminate. Some researchers have 
proposed the use of an iteration limit to guarantee termination despite an unattain­
able error threshold {Fahlman, 1989}. Unfortunately, for practical problems where 
this limit is not known a priori, this approach is inapplicable. 

A necessary condition for W* to be a minimum, either local or global I is that the 
gradient g(w*) = V E(w*) = o. Hence, the most usual convergence criterion for 
optimization algorithms is Ilg(Wk)11 ~ l where l is a sufficiently small gradient 
threshold. The downside of using this as a convergence test is that, for successful 
trials, learning times will be longer than they would be in the case of an error thresh­
old. Error tolerances are usually specified in terms of an acceptable bit error, and 
a threshold on the maximum bit error (MBE) is a more appropriate representation 
of this criterion than is a simple error threshold. For this reason we have chosen 
a convergence criterion consisting of a gradient threshold and an M BE threshold 
(T), terminating when IIg(wk)1I < lor M BE(Wk) < T, where M BEO is defined as: 

M BE(w,,) = max (. max (!(Ti(r) - Oi(Wkl r))2)) . 
reR leoutputs 

6 STEEPEST DESCENT 

Steepest Descent is the most classical gradient-based optimization algorithm. In 
this algorithm the search direction d" is always the negative of the gradient - the 
direction of steepest descent. For network learning problems the computation of 
g(w), the gradient of E(w), is straightforward: 

where 

where for output units 

while for all other units 

g(W) = VE(w) 

Ve(w, r) 

8e(wlr) 
8W ij 

6j(w, r) 

6j(w, r) 

[ d~ 2:e(Wlr)]T = 2: Ve(w, r), 
reR reR 

[8e(Wlr), 8e(w,r) , ... , 8e(w, r)]T 
8wn 8W12 8wmn 

,; (ij (w, r))(oj(w, r) - Tj(r)), 

,;(ij(w, r)) L 6j (w, r)Wjk. 

kefanout; 
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The evaluation of g is thus almost dual to the evaluation of N; while the latter feeds 
forward through the net, the former feeds back. Both computations are inherently 
parallelizable and of the same complexity. 

The method of Steepest Descent determines the step Ok by inexact linesearch, mean­
ing that it minimizes E(Wk - Okdk). There are many ways to perform this com­
putation, but they are all iterative in nature and thus involve the evaluation of 
E(Wk - Okdk) for several values of Ok. As each evaluation requires a pass through 
the entire training set, this is expensive. Curve fitting techniques are employed to 
reduce the number of iterations needed to terminate a linesearch. Again, there are 
many ways to curve fit . We have employed the method of false position and used 
the Wolfe Test to terminate a line search {Luenberger, 1986}. In practice we find 
that the typical linesearch in a network learning problem terminates in 2 or 3 iter­
ations. 

7 PARTIAL CONJUGATE GRADIENT METHODS 

Because linesearch guarantees that E(Wk+d < E(Wk), the Steepest Descent algo­
rithm can be proven to converge for a large class of problems {Luenberger, 1986}. 
Unfortunately, its convergence rate is only linear and it suffers from the problem 
of "cross-stitching" {Luenberger, 1986}, so it may require a large number of iter­
ations. One way to guarantee a faster convergence rate is to make use of higher 
order derivatives. Others have investigated the performance of algorithms of this 
class on network learning tasks, with mixed results {Becker, 1989}. We are not 
interested in such techniques because they are less parallelizable than the methods 
we have pursued and because they are more expensive, both computationally and 
in terms of storage requirements. Because we are implementing our algorithms on 
the Connection Machine, where memory is extremely limited, this last concern is 
of special importance. We thus confine our investigation to algorithms that require 
explicit evaluation only of g, the first derivative. 

Conjugate gradient techniques take advantage of second order information to avoid 
the problem of cross-stitching without requiring the estimation and storage of the 
Hessian (matrix of second-order partials). The search direction is a combination of 
the current gradient and the previous search direction: 

There are various rules for determining 13k; we have had the most success with the 
Polak-Ribiere rule, where 13k is determined from gk+l and gk according to 

a _ (gk+l - gk)T . gk+l 
}Jk - T . 

gk . gk 

As in the Steepest Descent algorithm, Ok is determined by linesearch. \Vith a sim­
ple reinitialization procedure partial conjugate gradient techniques are as robust as 
the method of Steepest Descent {Powell, 1977}; in practice we find that the Polak­
Ribiere method requires far fewer iterations than Steepest Descent. 
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8 BACKPROPAGATION 

The Batch Back-propagation algorithm {Rumelhart, 1986} can be described in 
terms of our optimization framework. Without momentum, the algorithm is very 
similar to the method of Steepest Descent in that dk = -gk. Rather than being 
determined by a linesearch, a, the "learning rate", is a fixed user-supplied constant. 
With momentum, the algorithm is similar to a partial conjugate gradient method, 
as dk+l = -~+l + ,Bkdk, though again (3, the "momentum term", is fixed. On-line 
Back-propagation is a variation which makes a change to the weight vector following 
the presentation of each input vector: dk = V'e(wk' rk). 

Though very simple, we can see that this algorithm is numerically unsound for sev­
eral reasons. Because,B is fixed, d k may not be a descent direction, and in this 
case any a will increase EO. Even if dk is a direction of descent (as is the case 
for Batch Back-propagation without momentum), a may be large enough to move 
from one wall of a "valley" to the opposite wall, again resulting in an increase in 
EO. Because the algorithm can not guarantee that EO is reduced by successive 
iterations, it cannot be proven to converge. In practice, finding a value for a which 
results in fast progress and stable behavior is a black art, at best. 

9 WEIGHT DECAY 

One of the problems of performing gradient descent on the "error surface" is that 
minima may be at infinity. (In fact, for boolean learning problems all minima 
are at infinity.) Thus an algorithm may have to travel a great distance through 
weightspace before it converges. Many researchers have found that weight decay is 
useful for reducing learning times {Hinton, 1986}. This technique can be viewed as 
adding a term corresponding to the length of the weight vector to the cost function; 
this modifies the cost surface in a way that bounds all the minima. Rather than 
minimizing on the error surface, minimization is performed on the surface with cost 
function 

C(W) = E(w) + 211wll2 
2 

where I, the relative weight cost, is a problem-specific parameter. The gradient for 
this cost function is g( w) = V' C( w) = V' E( w) + IW, and for any step o'k, the effect 
of I is to "decay" the weight vector by a factor of (1 - O'ey): 

10 PARALLEL IMPLEMENTATION ISSUES 

We have emphasized the parallelism inherent in the evaluation of EO and gO. To 
be efficient, any learning algorithm must exploit this parallelism. Without momen­
tum, the Back-propagation algorithm is the simplest gradient descent technique, as 
it requires the storage of only a single vector, gk. Momentum requires the storage of 
only one additional vector, dk-l. The Steepest Descent algorithm also requires the 
storage of only a single vector more than Back-propagation without momentum: 
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dk, which is needed for linesearch. In addition to dk, the Polak-Ribiere method 
requires the storage of two additional vectors: dk-l and gk-l. The additional stor­
age requirements of the optimization techniques are thus minimal. The additional 
computational requirements are essentially those needed for linesearch - a single dot 
product and a single broadcast per iteration. These operations are parallelizable 
(log time on the Connection Machine) so the additional computation required by 
these algorithms is also minimal, especially since computation time is dominated 
by the evaluation of EO and gO. Both the Steepest Descent and Polak-Ribiere 
algorithms are easily parallelizable. We have implemented these algorithms, as well 
as Back-propagation, on a Connection Machine {Hillis, 1986}. 

11 EXPERIMENTAL RESULTS - BOOLEAN LEARNING 

We have compared the performance of the Polak-Ribiere (P-R), Steepest Descent 
(S-D), and Batch Back-propagation (B-B) algorithms on small boolean learning 
problems. In all cases we have found the Polak-Ribiere algorithm to be significantly 
more efficient than the others. All the problems we looked at were based on three­
layer networks (1 hidden layer) using the logistic function for all node functions. 
Initial weight vectors were generated by randomly choosing each component from 
(+r, -r). '1 is the relative weight cost, and f and r define the convergence test. 
Learning times are measured in terms of epochs (sweeps through the training set). 

The encoder problem is easily scaled and has no bad local minima (assuming suf­
ficient hidden units: log(#inputs)). All Back-propagation trials used Q' = 1 and 
(3 = OJ these values were found to work about as well as any others. Table 1 sum­
marizes the results. Standard deviations for all data were insignificant « 25%). 

TABLE 1. Encoder Results 

Encoder num Parameter Values A verage Epochs to Convergence 
Problem trials r 1 '11 r/ f P-R 1 S-D / B-B 

10-5-10 100 1.0 1e-4 1e-1 1e-8 63.71 109.06 196.93 
10-5-10 100 1.0 1e-4 2e-2 1e-8 71.27 142.31 299.55 
10-5-10 100 1.0 1e-4 7e-4 1e-8 104.70 431.43 3286.20 

10-5-10 100 1.0 1e-4 0.0 1e-4 279.52 1490.00 13117.00 
10-5-10 100 1.0 1e-4 0.0 1e-6 353.30 2265.00 24910.00 
10-5-10 100 1.0 1e-4 0.0 le-8 417.90 2863.00 35260.00 

4-2-4 100 1.0 1e-4 0.1 1e-8 36.92 56.90 179.95 
8-3-8 100 1.0 1e-4 0.1 1e-8 67.63 194.80 594.76 

16-4-16 100 1.0 1e-4 0.1 1e-8 121.30 572.80 990.33 
32-5-32 25 1.0 1e-4 0.1 1e-8 208.60 1379.40 1826.15 
64-6-64 25 1.0 1e-4 0.1 1e-8 405.60 4187.30 > 10000 
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The parity problem is interesting because it is also easily scaled and its weightspace 
is known to contain bad local minima.. To report learning times for problems with 
bad local minima, we use expected epochs to solution, EES. This measure makes 
sense especially if one considers an algorithm with a restart procedure: if the algo­
rithm terminates in a bad local minima it can restart from a new random weight 
vector. EES can be estimated from a set of independent learning trials as the 
ratio of total epochs to successful trials. The results of the parity experiments are 
summarized in table 2. Again, the optimization techniques were more efficient than 
Back-propagation. This fact is most evident in the case of bad trials. All trials used 
r = 1, "y = 1e - 4, T = 0.1 and f = 1e - 8. Back-propagation used a = 1 and f3 = o. 

TABLE 2. Parity Results 

II Parity alg trials I %"uee I avg"uee (s.d.) I avgun, (s.d.) I EES 11 

2-2-1 P-R 100 72% 73 (43) 232 (54) 163 
S-D 100 80% 95 (115 3077 (339) 864 
B-B 100 78% 684 (1460 47915 (5505) 14197 

4-4-1 P-R 100 61% 352 (122 453 J}17 641 
S-D 100 99% 2052 (1753 18512 (- 2324 
B-B 100 71% 8704 (8339 95345 (11930 48430 

8-8-1 P-R 16 50% 1716 (748 953 (355 2669 
S-D 6 - >10000 >10000 >10000 
B-B 2 - >100000 >100000 >100000 

12 LETTER RECOGNITION 

One criticism of batch-based gradient descent techniques is that for large real-world, 
real-valued learning problems, they will be be less efficient than On-line Back­
propagation. The task of characterizing hand drawn examples of the 26 capital 
letters was chosen as a good problem to test this, partly because others have used 
this problem to demonstrate that On-line Back-propagation is more efficient than 
Batch Back-propagation {Le Cun, 1986}. The experimental setup was as follows: 

Characters were hand-entered in a 80 x 120 pixel window with a 5 pixel-wide brush 
(mouse controlled). Because the objective was to have many noisy examples of the 
same input pattern, not to learn scale and orientation invariance, all characters were 
roughly centered and roughly the full size of the window. Following character entry, 
the input window was symbolically gridded to define 100 8 x 12 pixel regions. Each 
of these regions was an input and the percentage of "on" pixels in the region was 
its value. There were thus 100 inputs, each of which could have any of 96 (8 x 12) 
distinct values. 26 outputs were used to represent a one-hot encoding of the 26 
letters, and a network with a single hidden layer containing 10 units was chosen. 
The network thus had a 100-10-26 architecture; all nodes used the logistic function. 
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A training set consisting of 64 distinct sets of the 26 upper case letters was created 
by hand in the manner described. 25" A" vectors are shown in figure 1. This 
large training set was recursively split in half to define a series of 6 successively 
larger training sets; Ro to Ro, where Ro is the smallest training set consisting 
of 1 of each letter and Ri contains Ri-l and 2i - 1 new letter sets. A testing set 
consisting of 10 more sets of hand-entered characters was also created to measure 
network performance. For each Ri, we compared naive learning to incremental 
learning, where naive learning means initializing w~i) randomly and incremental 

learning means setting w~i) to w~i-l) (the solution weight vector to the learning 
problem based on Ri-d. The incremental epoch count for the problem based on 
Ri was normalized to the number of epochs needed starting from w~i-l) plus! the 
number of epochs taken by the problem based on Ri-l (since IRi-ll = !IRd). This 
normalized count thus reflects the total number of relative epochs needed to get 
from a naive network to a solution incrementally. 

Both Polak-Ribiere and On-line Back-propagation were tried on all problems. Table 
3 contains only results for the Polak-Ribiere method because no combination of 
weight-decay and learning rate were found for which Back-propagation could find a 
solution after 1000 times the number of iterations taken by Polak-Ribiere, although 
values of "y from 0.0 to 0.001 and values for 0' from 1.0 to 0.001 were tried. All 
problems had r = 1, "y = 0.01, r = Ie - 8 and € = 0.1. Only a single trial was done 
for each problem. Performance on the test set is shown in the last column. 

FIGURE 1. 25 "A"s TABLE 3. Letter Recognition 

prob Learning Time .r epochs) Test 
set INC I NORM I NAIV % 
RO 95 95 95 53.5 
R1 83 130 85 69.2 
R2 63 128 271 80.4 

~-!j. :11;; H·-:' ·r::. f"t 
' ~:!'!I .. ....:I I .. · ... M ... ~ r ~ , . . ..... ~ ~ .: 

R3 14 78 388 83.4 
R4 191 230 1129 92.3 
R5 153 268 1323 98.1 
R6 46 180 657 99.6 

F": 1'\ .r .,. :'1'''' r! 1 
~" ,:: HI .•. ;: '1 .. ,l'1 J.'1 .. .~ ;i....J _ •• 
. I. t· '. I! = t· ! , ., 

The incremental learning paradigm was very effective at reducing learning times. 
Even non-incrementally, the Polak-Ribiere method was more efficient than on-line 
Back-propagation on this problem. The network with only 10 hidden units was 
sufficient, indicating that these letters can be encoded by a compact set of features. 

13 CONCLUSIONS 

Describing the computational task of learning in feedforward neural networks as 
an optimization problem allows exploitation of the wealth of mathematical pro­
gramming algorithms that have been developed over the years. We have found 
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that the Polak-Ribiere algorithm offers superior convergence properties and signif­
icant speedup over the Back-propagation algorithm. In addition, this algorithm is 
well-suited to parallel implementation on massively parallel computers such as the 
Connection Machine. Finally, incremental learning is a way to increase the efficiency 
of optimization techniques when applied to large real-world learning problems such 
as that of handwritten character recognition. 
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