
40

EFFICIENT PARALLEL LEARNING
ALGORITHMS FOR NEURAL NETWORKS

Alan H. Kramer and A. Sangiovanni-Vincentelli
Department of EECS

U .C. Berkeley
Berkeley, CA 94720

ABSTRACT

Parallelizable optimization techniques are applied to the problem of
learning in feedforward neural networks. In addition to having supe­
rior convergence properties, optimization techniques such as the Polak­
Ribiere method are also significantly more efficient than the Back­
propagation algorithm. These results are based on experiments per­
formed on small boolean learning problems and the noisy real-valued
learning problem of hand-written character recognition.

1 INTRODUCTION

The problem of learning in feedforward neural networks has received a great deal
of attention recently because of the ability of these networks to represent seemingly
complex mappings in an efficient parallel architecture. This learning problem can
be characterized as an optimization problem, but it is unique in several respects.
Function evaluation is very expensive. However, because the underlying network is
parallel in nature, this evaluation is easily parallelizable. In this paper, we describe
the network learning problem in a numerical framework and investigate parallel
algorithms for its solution. Specifically, we compare the performance of several
parallelizable optimization techniques to the standard Back-propagation algorithm.
Experimental results show the clear superiority of the numerical techniques.

2 NEURAL NETWORKS

A neural network is characterized by its architecture, its node functions, and its
interconnection weights. In a learning problem, the first two of these are fixed, so
that the weight values are the only free parameters in the system. when we talk
about "weight space" we refer to the parameter space defined by the weights in a
network, thus a "weight vector" w is a vector or a point in weightspace which defines
the values of each weight in the network. We will usually index the components of
a weight vector as Wij, meaning the weight value on the connection from unit i to
unit j. Thus N(w, r), a network function with n output units, is an n-dimensional
vector-valued function defined for any weight vector wand any input vector r:

N(w, r) = [Ol(W, r), D2(w, r), ... , on(w, r)f

Efficient Parallel Learning Algorithms 41

where 0. is the ith output unit of the network. Any node j in the network has input
ij(w,r) = E'efanin; o.(w,r)wij and output oj(w,r) ;: I;(ij(w,r», where 1;0 is
the node function. The evaluation of NO is inherently parallel and the time to
evaluate NO on a single input vector is O(#layers). If pipelining is used, multiple
input vectors can be evaluated in constant time.

3 LEARNING

The "learning" problem for a neural network refers to the problem of finding a
network function which approximates some desired "target" function TO, defined
over the same set of input vectors as the network function. The problem is simplified
by asking that the network function match the target function on only a finite set of
input vectors, the "training set" R. This is usually done with an error measure. The
most common measure is sum-squared error, which we use to define the "instance
error" between N(w, r) and T(r) at weight vector wand input vector r:

eN,T(w, r) = E ! (Ta(r) - o.(w, r»2 = !IIT(r) - N(w, r)1I2.
ieoutputs

We can now define the "error function" between NO and TO over R as a function
ofw:

EN,T,R(w) = I: eN,T(w, r).
reR

The learning problem is thus reduced to finding a w for which EN T R(w) is min-, ,
imized. If this minimum value is zero then the network function approximates the
target function exactly on all input vectors in the training set. Henceforth, for no­
tational simplicity we will write eO and EO rather than eN TO and EN T RO.

, .» ,

4 OPTIMIZATION TECHNIQUES

As we have framed it here, the learning problem is a classic problem in optimization.
More specifically, network learning is a problem of function approximation, where
the approximating function is a finite parameter-based system. The goal is to find
a set of parameter values which minimizes a cost function, which in this case, is a
measure of the error between the target function and the approximating function.

Among the optimization algorithms that can be used to solve this type of problem,
gradient-based algorithms have proven to be effective in a variety of applications
{Avriel, 1976}. These algorithms are iterative in nature, thus Wk is the weight
vector at the kth iteration. Each iteration is characterized by a search direction dk
and a step ak. The weight vector is updated by taking a step in the search direction
as below:

tor(k=o; evaluate(wk) != CONVERGED; ++k) {

dk = determine-.eearch_directionO;
ak = determine-.etepO;
Wk+l = wit; + akdk ;

}

42 Kramer and Sangiovanni-Vincentelli

If dk is a direction of descent I such as the negative of the gradient, a sufficiently
small step will reduce the value of EO. Optimization algorithms vary in the way
they determine Q and d, but otherwise they are structured as above.

5 CONVERGENCE CRITERION

The choice of convergence criterion is important. An algorithm must terminate
when EO has been sufficiently minimized. This may be done with a threshold on
the value of EO, but this alone is not sufficient. In the case where the error surface
contains "bad" local minima, it is possible that the error threshold will be unattain­
able, and in this case the algorithm will never terminate. Some researchers have
proposed the use of an iteration limit to guarantee termination despite an unattain­
able error threshold {Fahlman, 1989}. Unfortunately, for practical problems where
this limit is not known a priori, this approach is inapplicable.

A necessary condition for W* to be a minimum, either local or global I is that the
gradient g(w*) = V E(w*) = o. Hence, the most usual convergence criterion for
optimization algorithms is Ilg(Wk)11 ~ l where l is a sufficiently small gradient
threshold. The downside of using this as a convergence test is that, for successful
trials, learning times will be longer than they would be in the case of an error thresh­
old. Error tolerances are usually specified in terms of an acceptable bit error, and
a threshold on the maximum bit error (MBE) is a more appropriate representation
of this criterion than is a simple error threshold. For this reason we have chosen
a convergence criterion consisting of a gradient threshold and an M BE threshold
(T), terminating when IIg(wk)1I < lor M BE(Wk) < T, where M BEO is defined as:

M BE(w,,) = max (. max (!(Ti(r) - Oi(Wkl r))2)) .
reR leoutputs

6 STEEPEST DESCENT

Steepest Descent is the most classical gradient-based optimization algorithm. In
this algorithm the search direction d" is always the negative of the gradient - the
direction of steepest descent. For network learning problems the computation of
g(w), the gradient of E(w), is straightforward:

where

where for output units

while for all other units

g(W) = VE(w)

Ve(w, r)

8e(wlr)
8W ij

6j(w, r)

6j(w, r)

[d~ 2:e(Wlr)]T = 2: Ve(w, r),
reR reR

[8e(Wlr), 8e(w,r) , ... , 8e(w, r)]T
8wn 8W12 8wmn

,; (ij (w, r))(oj(w, r) - Tj(r)),

,;(ij(w, r)) L 6j (w, r)Wjk.

kefanout;

Efficient Parallel Learning Algorithms 43

The evaluation of g is thus almost dual to the evaluation of N; while the latter feeds
forward through the net, the former feeds back. Both computations are inherently
parallelizable and of the same complexity.

The method of Steepest Descent determines the step Ok by inexact linesearch, mean­
ing that it minimizes E(Wk - Okdk). There are many ways to perform this com­
putation, but they are all iterative in nature and thus involve the evaluation of
E(Wk - Okdk) for several values of Ok. As each evaluation requires a pass through
the entire training set, this is expensive. Curve fitting techniques are employed to
reduce the number of iterations needed to terminate a linesearch. Again, there are
many ways to curve fit . We have employed the method of false position and used
the Wolfe Test to terminate a line search {Luenberger, 1986}. In practice we find
that the typical linesearch in a network learning problem terminates in 2 or 3 iter­
ations.

7 PARTIAL CONJUGATE GRADIENT METHODS

Because linesearch guarantees that E(Wk+d < E(Wk), the Steepest Descent algo­
rithm can be proven to converge for a large class of problems {Luenberger, 1986}.
Unfortunately, its convergence rate is only linear and it suffers from the problem
of "cross-stitching" {Luenberger, 1986}, so it may require a large number of iter­
ations. One way to guarantee a faster convergence rate is to make use of higher
order derivatives. Others have investigated the performance of algorithms of this
class on network learning tasks, with mixed results {Becker, 1989}. We are not
interested in such techniques because they are less parallelizable than the methods
we have pursued and because they are more expensive, both computationally and
in terms of storage requirements. Because we are implementing our algorithms on
the Connection Machine, where memory is extremely limited, this last concern is
of special importance. We thus confine our investigation to algorithms that require
explicit evaluation only of g, the first derivative.

Conjugate gradient techniques take advantage of second order information to avoid
the problem of cross-stitching without requiring the estimation and storage of the
Hessian (matrix of second-order partials). The search direction is a combination of
the current gradient and the previous search direction:

There are various rules for determining 13k; we have had the most success with the
Polak-Ribiere rule, where 13k is determined from gk+l and gk according to

a _ (gk+l - gk)T . gk+l
}Jk - T .

gk . gk

As in the Steepest Descent algorithm, Ok is determined by linesearch. \Vith a sim­
ple reinitialization procedure partial conjugate gradient techniques are as robust as
the method of Steepest Descent {Powell, 1977}; in practice we find that the Polak­
Ribiere method requires far fewer iterations than Steepest Descent.

44 Kramer and Sangiovanni-Vincentelli

8 BACKPROPAGATION

The Batch Back-propagation algorithm {Rumelhart, 1986} can be described in
terms of our optimization framework. Without momentum, the algorithm is very
similar to the method of Steepest Descent in that dk = -gk. Rather than being
determined by a linesearch, a, the "learning rate", is a fixed user-supplied constant.
With momentum, the algorithm is similar to a partial conjugate gradient method,
as dk+l = -~+l + ,Bkdk, though again (3, the "momentum term", is fixed. On-line
Back-propagation is a variation which makes a change to the weight vector following
the presentation of each input vector: dk = V'e(wk' rk).

Though very simple, we can see that this algorithm is numerically unsound for sev­
eral reasons. Because,B is fixed, d k may not be a descent direction, and in this
case any a will increase EO. Even if dk is a direction of descent (as is the case
for Batch Back-propagation without momentum), a may be large enough to move
from one wall of a "valley" to the opposite wall, again resulting in an increase in
EO. Because the algorithm can not guarantee that EO is reduced by successive
iterations, it cannot be proven to converge. In practice, finding a value for a which
results in fast progress and stable behavior is a black art, at best.

9 WEIGHT DECAY

One of the problems of performing gradient descent on the "error surface" is that
minima may be at infinity. (In fact, for boolean learning problems all minima
are at infinity.) Thus an algorithm may have to travel a great distance through
weightspace before it converges. Many researchers have found that weight decay is
useful for reducing learning times {Hinton, 1986}. This technique can be viewed as
adding a term corresponding to the length of the weight vector to the cost function;
this modifies the cost surface in a way that bounds all the minima. Rather than
minimizing on the error surface, minimization is performed on the surface with cost
function

C(W) = E(w) + 211wll2
2

where I, the relative weight cost, is a problem-specific parameter. The gradient for
this cost function is g(w) = V' C(w) = V' E(w) + IW, and for any step o'k, the effect
of I is to "decay" the weight vector by a factor of (1 - O'ey):

10 PARALLEL IMPLEMENTATION ISSUES

We have emphasized the parallelism inherent in the evaluation of EO and gO. To
be efficient, any learning algorithm must exploit this parallelism. Without momen­
tum, the Back-propagation algorithm is the simplest gradient descent technique, as
it requires the storage of only a single vector, gk. Momentum requires the storage of
only one additional vector, dk-l. The Steepest Descent algorithm also requires the
storage of only a single vector more than Back-propagation without momentum:

Efficient Parallel Learning Algorithms 45

dk, which is needed for linesearch. In addition to dk, the Polak-Ribiere method
requires the storage of two additional vectors: dk-l and gk-l. The additional stor­
age requirements of the optimization techniques are thus minimal. The additional
computational requirements are essentially those needed for linesearch - a single dot
product and a single broadcast per iteration. These operations are parallelizable
(log time on the Connection Machine) so the additional computation required by
these algorithms is also minimal, especially since computation time is dominated
by the evaluation of EO and gO. Both the Steepest Descent and Polak-Ribiere
algorithms are easily parallelizable. We have implemented these algorithms, as well
as Back-propagation, on a Connection Machine {Hillis, 1986}.

11 EXPERIMENTAL RESULTS - BOOLEAN LEARNING

We have compared the performance of the Polak-Ribiere (P-R), Steepest Descent
(S-D), and Batch Back-propagation (B-B) algorithms on small boolean learning
problems. In all cases we have found the Polak-Ribiere algorithm to be significantly
more efficient than the others. All the problems we looked at were based on three­
layer networks (1 hidden layer) using the logistic function for all node functions.
Initial weight vectors were generated by randomly choosing each component from
(+r, -r). '1 is the relative weight cost, and f and r define the convergence test.
Learning times are measured in terms of epochs (sweeps through the training set).

The encoder problem is easily scaled and has no bad local minima (assuming suf­
ficient hidden units: log(#inputs)). All Back-propagation trials used Q' = 1 and
(3 = OJ these values were found to work about as well as any others. Table 1 sum­
marizes the results. Standard deviations for all data were insignificant « 25%).

TABLE 1. Encoder Results

Encoder num Parameter Values A verage Epochs to Convergence
Problem trials r 1 '11 r/ f P-R 1 S-D / B-B

10-5-10 100 1.0 1e-4 1e-1 1e-8 63.71 109.06 196.93
10-5-10 100 1.0 1e-4 2e-2 1e-8 71.27 142.31 299.55
10-5-10 100 1.0 1e-4 7e-4 1e-8 104.70 431.43 3286.20

10-5-10 100 1.0 1e-4 0.0 1e-4 279.52 1490.00 13117.00
10-5-10 100 1.0 1e-4 0.0 1e-6 353.30 2265.00 24910.00
10-5-10 100 1.0 1e-4 0.0 le-8 417.90 2863.00 35260.00

4-2-4 100 1.0 1e-4 0.1 1e-8 36.92 56.90 179.95
8-3-8 100 1.0 1e-4 0.1 1e-8 67.63 194.80 594.76

16-4-16 100 1.0 1e-4 0.1 1e-8 121.30 572.80 990.33
32-5-32 25 1.0 1e-4 0.1 1e-8 208.60 1379.40 1826.15
64-6-64 25 1.0 1e-4 0.1 1e-8 405.60 4187.30 > 10000

46' Kramer and Sangiovanni-Vincentelli

The parity problem is interesting because it is also easily scaled and its weightspace
is known to contain bad local minima.. To report learning times for problems with
bad local minima, we use expected epochs to solution, EES. This measure makes
sense especially if one considers an algorithm with a restart procedure: if the algo­
rithm terminates in a bad local minima it can restart from a new random weight
vector. EES can be estimated from a set of independent learning trials as the
ratio of total epochs to successful trials. The results of the parity experiments are
summarized in table 2. Again, the optimization techniques were more efficient than
Back-propagation. This fact is most evident in the case of bad trials. All trials used
r = 1, "y = 1e - 4, T = 0.1 and f = 1e - 8. Back-propagation used a = 1 and f3 = o.

TABLE 2. Parity Results

II Parity alg trials I %"uee I avg"uee (s.d.) I avgun, (s.d.) I EES 11

2-2-1 P-R 100 72% 73 (43) 232 (54) 163
S-D 100 80% 95 (115 3077 (339) 864
B-B 100 78% 684 (1460 47915 (5505) 14197

4-4-1 P-R 100 61% 352 (122 453 J}17 641
S-D 100 99% 2052 (1753 18512 (- 2324
B-B 100 71% 8704 (8339 95345 (11930 48430

8-8-1 P-R 16 50% 1716 (748 953 (355 2669
S-D 6 - >10000 >10000 >10000
B-B 2 - >100000 >100000 >100000

12 LETTER RECOGNITION

One criticism of batch-based gradient descent techniques is that for large real-world,
real-valued learning problems, they will be be less efficient than On-line Back­
propagation. The task of characterizing hand drawn examples of the 26 capital
letters was chosen as a good problem to test this, partly because others have used
this problem to demonstrate that On-line Back-propagation is more efficient than
Batch Back-propagation {Le Cun, 1986}. The experimental setup was as follows:

Characters were hand-entered in a 80 x 120 pixel window with a 5 pixel-wide brush
(mouse controlled). Because the objective was to have many noisy examples of the
same input pattern, not to learn scale and orientation invariance, all characters were
roughly centered and roughly the full size of the window. Following character entry,
the input window was symbolically gridded to define 100 8 x 12 pixel regions. Each
of these regions was an input and the percentage of "on" pixels in the region was
its value. There were thus 100 inputs, each of which could have any of 96 (8 x 12)
distinct values. 26 outputs were used to represent a one-hot encoding of the 26
letters, and a network with a single hidden layer containing 10 units was chosen.
The network thus had a 100-10-26 architecture; all nodes used the logistic function.

Efficient Parallel Learning Algorithms 47

A training set consisting of 64 distinct sets of the 26 upper case letters was created
by hand in the manner described. 25" A" vectors are shown in figure 1. This
large training set was recursively split in half to define a series of 6 successively
larger training sets; Ro to Ro, where Ro is the smallest training set consisting
of 1 of each letter and Ri contains Ri-l and 2i - 1 new letter sets. A testing set
consisting of 10 more sets of hand-entered characters was also created to measure
network performance. For each Ri, we compared naive learning to incremental
learning, where naive learning means initializing w~i) randomly and incremental

learning means setting w~i) to w~i-l) (the solution weight vector to the learning
problem based on Ri-d. The incremental epoch count for the problem based on
Ri was normalized to the number of epochs needed starting from w~i-l) plus! the
number of epochs taken by the problem based on Ri-l (since IRi-ll = !IRd). This
normalized count thus reflects the total number of relative epochs needed to get
from a naive network to a solution incrementally.

Both Polak-Ribiere and On-line Back-propagation were tried on all problems. Table
3 contains only results for the Polak-Ribiere method because no combination of
weight-decay and learning rate were found for which Back-propagation could find a
solution after 1000 times the number of iterations taken by Polak-Ribiere, although
values of "y from 0.0 to 0.001 and values for 0' from 1.0 to 0.001 were tried. All
problems had r = 1, "y = 0.01, r = Ie - 8 and € = 0.1. Only a single trial was done
for each problem. Performance on the test set is shown in the last column.

FIGURE 1. 25 "A"s TABLE 3. Letter Recognition

prob Learning Time .r epochs) Test
set INC I NORM I NAIV %
RO 95 95 95 53.5
R1 83 130 85 69.2
R2 63 128 271 80.4

~-!j. :11;; H·-:' ·r::. f"t
' ~:!'!I:I I .. · ... M ... ~ r ~ , ~ ~ .:

R3 14 78 388 83.4
R4 191 230 1129 92.3
R5 153 268 1323 98.1
R6 46 180 657 99.6

F": 1'\ .r .,. :'1'''' r! 1
~" ,:: HI .•. ;: '1 .. ,l'1 J.'1 .. .~ ;i....J _ ••
. I. t· '. I! = t· ! , .,

The incremental learning paradigm was very effective at reducing learning times.
Even non-incrementally, the Polak-Ribiere method was more efficient than on-line
Back-propagation on this problem. The network with only 10 hidden units was
sufficient, indicating that these letters can be encoded by a compact set of features.

13 CONCLUSIONS

Describing the computational task of learning in feedforward neural networks as
an optimization problem allows exploitation of the wealth of mathematical pro­
gramming algorithms that have been developed over the years. We have found

48 Kramer and Sangiovanni-Vincentelli

that the Polak-Ribiere algorithm offers superior convergence properties and signif­
icant speedup over the Back-propagation algorithm. In addition, this algorithm is
well-suited to parallel implementation on massively parallel computers such as the
Connection Machine. Finally, incremental learning is a way to increase the efficiency
of optimization techniques when applied to large real-world learning problems such
as that of handwritten character recognition.

Acknowledgments

The authors would like to thank Greg Sorkin for helpful discussions. This work was
supported by the Joint Services Educational Program grant #482427-25304.

References

{Avriel, 1976} Mordecai Avriel. Nonlinear Programming, Analysis and Methods.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1976.

{Becker, 1989} Sue Becker and Yan Le Cun. Improving the Convergence of Back­
Propagation Learning with Second Order Methods. In Proceedings of the 1988
Connectionist Alodels Summer School, pages 29-37, Morgan Kaufmann, San
Mateo Calif., 1989.

{Fahlman, 1989} Scott E. Fahlman. Faster Learning Variations on Back-Propagation:
An Empirical Study. In Proceedings of the 1988 Connectionist Models Sum­
mer School, pages 38-51, Morgan Kaufmann, San Mateo Calif., 1989.

{Hillis, 1986} William D. Hillis. The Connection Machine. MIT Press, Cambridge,
Mass, 1986.

{Hinton, 1986} G. E. Hinton. Learning Distributed Representations of Concepts.
In Proceedings of the Cognitive Science Society, pages 1-12, Erlbaum, 1986.

{Kramer, 1989} Alan H. Kramer. Optimization Techniques for Neural Networks.
Technical Memo #UCB-ERL-M89-1, U.C. Berkeley Electronics Research Lab­
oratory, Berkeley Calif., Jan. 1989.

{Le Cun, 1986} Yan Le Cun. HLM: A Multilayer Learning Network. In Pro­
ceedings of the 1986 Connectionist Alodels Summer School, pages 169-177,
Carnegie-Mellon University, Pittsburgh, Penn., 1986.

{Luenberger, 1986} David G. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley Co., Reading, Mass, 1986.

{Powell, 1977} M. J. D. Powell. "Restart Procedures for the Conjugate Gradient
Method", Mathematical Programming 12 (1977) 241-254

{Rumelhart, 1986} David E Rumelhart, Geoffrey E. Hinton, and R. J. Williams.
Learning Internal Representations by Error Propagation. In Parallel Dis­
tributed Processing: Explorations in the Microstructure , of Cognition. Vol 1:
Foundations, pages 318-362, MIT Press, Cambridge, Mass., 1986

