
72

ANALYSIS AND COMPARISON OF DIFFERENT LEARNING
ALGORITHMS FOR PATTERN ASSOCIATION PROBLEMS

J. Bernasconi
Brown Boveri Research Center

CH-S40S Baden, Switzerland

ABSTRACT

We investigate the behavior of different learning algorithms
for networks of neuron-like units. As test cases we use simple pat­
tern association problems, such as the XOR-problem and symmetry de­
tection problems. The algorithms considered are either versions of
the Boltzmann machine learning rule or based on the backpropagation
of errors. We also propose and analyze a generalized delta rule for
linear threshold units. We find that the performance of a given
learning algorithm depends strongly on the type of units used. In
particular, we observe that networks with ±1 units quite generally
exhibit a significantly better learning behavior than the correspon­
ding 0,1 versions. We also demonstrate that an adaption of the
weight-structure to the symmetries of the problem can lead to a
drastic increase in learning speed.

INTRODUCTION

In the past few years, a number of learning procedures for
neural network models with hidden units have been proposed 1 ,2. They
can all be considered as strategies to minimize a suitably chosen
error measure. Most of these strategies represent local optimization
procedures (e.g. gradient descent) and therefore suffer from all the
problems with local m1n1ma or cycles. The corresponding learning
rates, moreover, are usually very slow.

The performance of a given learning scheme may depend critical­
lyon a number of parameters and implementation details. General
analytical results concerning these dependences, however, are prac­
tically non-existent. As a first step, we have therefore attempted
to study empirically the influence of some factors that could have a
significant effect on the learning behavior of neural network sys­
tems.

Our preliminary investigations are restricted to very small
networks and to a few simple examples. Nevertheless, we have made
some interesting observations which appear to be rather general and
which can thus be expected to remain valid also for much larger and
more complex systems.

NEURAL NETWORK MODELS FOR PATTERN ASSOCIATION

An artificial neural network consists of a set of interconnec­
ted units (formal neurons). The state of the i-th unit is described
by a variable S. which can be discrete (e.g. S. = 0,1 or S. = ±1) or
continuous (e.l. 0 < S. < 1 or -1 < S. < +ll, and each ~onnection
j-7i carries a weight- W.1. which can be 1positive, zero, or negative.

1J

© American Institute of Physics 1988

73

The dynamics of the network is determined by a local update
rule,

S.(t+l)
1

= HI W . . S . (t))
j 1J J

(1)

where f is a nonlinear activation function, specifically a threshold
function in the case of discrete units and a sigmoid-type function,
e.g.

(2)
or

(3)

respectively, in the case of continuous units. The individual units
can be given different thresholds by introducing an extra unit which
always has a value of 1.

If the network is supposed to perform a pattern association
task, it is convenient to divide its units into input units, output
units, and hidden units. Learning then consists in adjusting the
weights in such a way that, for a given input pattern, the network
relaxes (under the prescribed dynamics) to a state in which the
output units represent the desired output pattern.

Neural networks learn from examples (input/output pairs) which
are presented many times, and a typical learning procedure can be
viewed as a strategy to minimize a suitably defined error function
F. In most cases, this strategy is a (stochastic) gradient descent
method: To a clamped input pattern, randomly chosen from the lear­
ning examples, the network produces an output pattern {O . }. This is
compared with the desired output, say {T . }, and the erfor F({O. },
{T . }) is calculated . Subsequently, each 1weight is changed by ~an
am~unt proportional to the respective gradient of F,

b.W ..
~J

of = -r} -­oW ..
~J

(4)

and the procedure is repeated for a new learning example until F is
minimized to a satisfactory level.

In our investigations, we shall consider two different types of
learning schemes. The first is a deterministic version of the Boltz­
mann machine learning rule! and has been proposed by Yann Le Cun2 •
It applies to networks with symmetric weights, W .. = W .. , so that an

~J J ~ energy

E(~) == - I W .. S. S .
(i ,j) ~J ~ J

(5)

can be associated with each state S = {S.}. If X refers to the net-
- 1 -

work state when only the input units are clamped and Y to the state
when both the input and output units are clamped, the error function

74

is defined as

F = E c:~) - E QO

and the gradients are simply given by

of - -- = Y. Y. oW. . 1 J
1J

x. X.
1 J

(6)

(7)

The second scheme, called backpropagation or generalized delta
rule 1 ,3, probably represents the most widely used learning algorithm.
In its original form, it applies to networks with feedforward connec­
tions only, and it uses gradient descent to minimize the mean squared
error of the output signal,

F = -21 L (T . - 0.)2
.11
1

(8)

For a weight W .. from an (input or hidden) unit j to an output
unit i, we simply ha~

(9)

where f' is the derivative of the nonlinear activation function
introduced in Eq. (1), and for weights which do not connect to an
output unit, the gradients can successively be determined by apply­
ing the chain rule of differentiation.

In the case of discrete units, f is a threshold function, so
that the backpropagation algorithm described above cannot be applied.
We remark, however, that the perceptron learning rUle 4 ,

~W .. = £(T. - O.)S.
1J 1 1 J

(10)

is nothing else than Eq. (9) with f' replaced by a constant £.

Therefore, we propose that a generalized delta rule for linear
threshold units can be obtained if f' is replaced by a constant £ in
all the backpropagation expressions for of/oW ... This generalization
of the perceptron rule is, of course, not u1dque. In layered net­
works, e.g., the value of the constant which replaces f' need not be
the same for the different layers.

ANALYSIS OF LEARNING ALGORITHMS

The proposed learning algorithms suffer from all the problems
of gradient descent on a complicated landscape. If we use small
weight changes, learning becomes prohibitively slow, while large
weight changes inevitably lead to oscillations which prevent the
algorithm from converging to a good solution. The error surface,
moreover, may contain many local minima, so that gradient descent is
not guaranteed to find a global minimum.

75

There are several ways to improve a stochastic gradient descent
procedure. The weight changes may, e.g., be accumulated over a
number of learning examples before the weights are actually changed.
Another often used method consists in smoothing the weight changes
by overrelaxation,

~W .. (k+1)
1J

of
= -~ ~W + a ~W .. (k)

a .. 1J
1J

(11)

where ~W .. (k) refers to the weight change after the presentation of
the k-th1 1earning example (or group of learning examples, respecti­
vely). The use of a weight decay term,

~W ..
1J

of = -11 ~W - BW ..
a .. 1J

1J

(12)

prevents the algorithm from generating very large weights which may
create such high barriers that a solution cannot be found in reason­
able time.

Such smoothing methods suppress the occurrence of oscillations,
at least to a certain extent, and thus allow us to use higher lear­
ning rates. They cannot prevent, however, that the algorithm may
become trapped in bad local minimum. An obvious way to deal with the
problem of local minima is to restart the algorithm with different
initial weights or, equivalently, to randomize the weights with a
certain probability p during the learning procedure. More sophisti­
cated approaches involve, e.g., the use of hill-climbing methods.

The properties of the error-surface over the weight space not
only depend on the choice of the error function F, but also on the
network architecture, on the type of units used, and on possible
restrictions concerning the values which the weights are allowed to
assume.

The performance of a learning algorithm thus depends on many
factors and parameters. These dependences are conveniently analyzed
in terms of the behavior of an appropriately defined learning curve.
For our small examples, where the learning set always consists of
all input/output cases, we have chosen to represent the performance
of a learning procedure by the fraction of networks that are
"perfect" after the presentation of N input patterns. (Perfect net­
works are networks which for every input pattern produce the correct
output). Such learning curves give us much more detailed information
about the behavior of the system than, e. g., averaged quantities
like the mean learning time.

RESULTS

In the following, we shall present and discuss some represen­
tative results of our empirical study. All learning curves refer to
a set of 100 networks that have been exposed to the same learning
procedure, where we have varied the initial weights, or the sequence

76

of learning examples, or both. With one exception (Figure 4), the
sequences of learning examples are always random.

A prototype pattern association problem is the exclusive-or
(XOR) problem. Corresponding networks have two input units and one
output unit. Let us first consider an XOR-network with only one
hidden unit, but in which the input units also have direct connec­
tions to the output unit. The weights are symmetric, and we use the
deterministic version of the Boltzmann learning rule (see Eqs. (5)
to (7)). Figure 1 shows results for the case of tabula rasa initial
conditions, i.e. the initial weights are all set equal to zero. If
the weights are changed after every learning example, about 2/3 of
the networks learn the problem with less than 25 presentations per
pattern (which corresponds to a total number of 4 x 25 = 100 presen­
tations). The remaining networks (about 1/3), however, never learn
to solve the XOR-problem, no matter how many input/output cases are
presented. This can be understood by analyzing the corresponding
evolution-tree in weight-space which contains an attractor consis­
ting of 14 "non-perfect" weight-configurations. The probability to
become trapped by this attractor is exactly 1/3. If the weight
changes are accumulated over 4 learning examples, no such attractor

100 I I I I

en 80 ~ - -
a:: 0 0 0
0 0 0 0

ij 0 0 0
~ ••• • • • i • • • • • • • • • .- 60 - I- 000 -w 0
z • 0 0

.- • 0

u • 00 w 40 - 0 0 -
lL. • a:: • 0
W
Q. 0

20 ·0 -
~ 0
0

~

0
.o.~. I I I I

0 20 40 60 80 100

#: PRESENTATIONS /PATTERN

Fig. 1. Learning curves for an XOR-network with one hidden unit
(deterministic Boltzmann learning, discrete ±I units, initial
weights zero). Full circles: weights changed after every learning
example; open circles: weight changes accumulated over 4 learning
examples.

77

seems to exist (see Fig. 1), but for some networks learning at least
takes an extremely long time . The same saturation effect is observed
with random initial weights (uniformly distributed between -1 and
+1), see Fig. 2.

Figure 2 also exhibits the difference in learning behavior
between networks with ±1 units and such with 0,1 units. In both
cases, weight randomization leads to a considerably improved lear­
ning behavior. A weight decay term, by the way, has the same effect.
The most striking observation, however, is that ±1 networks learn
much faster than 0,1 networks (the respective average learning times
differ by about a factor of 5). In this connection, we should mention
that ~ = 0.1 is about optimal for 0,1 units and that for ±1 networks
the learning behavior is practically independent of the value of ~.

It therefore seems that ±1 units lead to a much more well-behaved
error-surface than 0,1 units. One can argue, of course, that a
discrete 0,1 model can always be translated into a ±1 model, but
this would lead to an energy function which has a considerably more
complicated weight dependence than Eq. (5).

100

en
80 ~

a:::
0
3: 60 w
z
....
u 40 w
lL.
a:::
w
a..
~

20
0

0
2 5 10 20 50 100 200 1000

PRESENTATIONS / PATTERN

Fig. 2. Learning curves for an XOR-network with one hidden unit
(deterministic Boltzmann learning, initial weights random, weight
changes accumulated over 5 learning examples). Circles: discrete ±1
units, ~ = 1; triangles: discrete 0,1 units, ~ = 0.1; broken curves:
without weight randomization; solid curves: with weight randomiza­
tion (p = 0.025).

78

Figures 3 and 4 refer to a feedforward XOR-network with 3
hidden units, and to backpropagation or generalized delta rule
learning. In all cases we have included an overrelaxation (or momen­
tum) term with a = 0.9 (see Eq. (11». For the networks with contin­
uous units we have used the activation functions given by Eqs. (2)
and (3), respectively, and a network was considered "perfect" if for
all input/output cases the error was smaller than 0.1 in the 0,1
case, or smaller than 0.2 in the ±1 case, respectively.

In Figure 3, the weights have been changed after every learning
example, and all curves refer to an optimal choice of the only
remaining parameter, £. or ", respectively. For discrete as well as
for continuous units, the ±1 networks again perform much better than
their 0,1 counterparts. In the continuous case, the average learning
times differ by about a factor of 7, and in the discrete case the
discrepancy is even more pronounced. In addition, we observe that in
±1 networks learning with the generalized delta rule for discrete
units is about twice as fast as with the backpropagation algorithm
for continuous units.

100~--~--~----~----~~~~--~--~

en 80 ~
a::
0
~
I- 60 w
Z

I-
0

40 w
lL.
a::
w
a.
~

20
0

O~----~--~------~----~----~~~~--~

5 10 20 50 100 200 500 1000

:# PRESENTATIONS / PATTERN

Fig. 3. Learning curves for an XOR-network with three hidden units
(backpropagation/generalized delta rule, initial weights random,
weights changed after every learning example). Open circles: discre­
te ±1 units, £. = 0.05; open triangles: discrete 0,1 units, £. = 0.025;
full circles: continuous ±1 units, " = 0.125; full triangles; contin­
uous 0,1 units, " = 0.25.

79

In Figure 4, the weight changes are accumulated over all 4
input/output cases, and only networks with continuous units are
considered. Also in this case, the ±1 units lead to an improved
learning behavior (the optimal Il-values are about 2.5 and 5.0,
respectively). They not only lead to significantly smaller learning
times, but ±1 networks also appear to be less sensitive with respect
to a variation of 11 than the corresponding 0,1 versions.

The better performance of the ±1 models with continuous units
can partly be attributed to the steeper slope of the chosen activa­
tion function, Eq. (3). A comparison with activation functions that
have the same slope, however, shows that the networks with ±1 units
still perform significantly better than those with 0,1 units. If the
weights are updated after every learning example, e.g., the reduc­
tion in learning time remains as large as a factor of 5. In the case
of backpropagation learning, the main reason for the better perfor­
mance of ±1 units thus seems to be related to the fact that the
algorithm does not modify weights which emerge from a unit with
value zero. Similar observations have been made by Stornetta and
Huberman,s who further find that the discrepancies become even more
pronounced if the network size is increased.

100

"1 = 5.0
CI)

80 ~
a:
0
~
I- 60 w
z
I-
u

40 w
lL.
a:
w
a..

~
20

0

0
0 50 100 150 200 250

PRESENTATIONS I PATTERN

Fig. 4. Learning curves for an XOR-network with three hidden units
(backpropagation, initial weights random, weight changes accumulated
over all 4 input/output cases). Circles: continuous ±1 units;
triangles: continuous 0,1 units.

80

In Figure 5, finally, we present results for a network that
learns to detect mirror symmetry in the input pattern. The network
consists of one output, one hidden, and four input units which are '
also directly connected to the output unit. We use the deterministic
version of Boltzmann learning and change the weights after every
presentation of a learning pattern . If the weights are allowed to
assume arbitrary values, learning is rather slow and on average
requires almost 700 presentations per pattern. We have observed,
however, that the algorithm preferably seems to converge to solu­
tions in which geometrically symmetric weights are opposite in sign
and almost equal in magnitude (see also Ref. 3). This means that the
symmetric input patterns are automatically treated as equivalent, as
their net input to the hidden as well as to the output unit is zero.
We have therefore investigated what happens if the weights are
forced to be antisymmetric from the beginning. (The learning proce­
dure, of course, has to be adjusted such that it preserves this
antisymmetry). Figure 5 shows that such a problem-adapted weight­
structure leads to a dramatic decrease in learning time.

100

• 0

• 0

• 0
en 80 • 0
~ • 0 a:: • 0
3: • 0

• 0 I- 60 w 0

z • • 0
l- • 0 (,)
w •
LL. 40 • a:: • 0
lLI 0
a.. 0

~ • 0
0 20 0

• 0

• 0

0
2 5 10 20 50 100 200 500 2000

PRESENTATIONS I PATTERN

Fig. 5. Learning curves for a symmetry detection network with 4
input units and one hidden unit (deterministic Boltzmann learning,
11 = 1, discrete ±1 units, initial weights random, weights changed
after every learning example). Full circles: symmetry-adapted
weights; open circles: arbitrary weights, weight randomization
(p = 0.015).

81

CONCLUSIONS

The main results of our empirical study can be summarized as
follows:
- Networks with ±1 units quite generally exhibit a significantly

faster learning than the corresponding 0,1 versions.
- In addition, ±1 networks are often less sensitive to parameter va­

riations than 0,1 networks.
- An adaptation of the weight-structure to the symmetries of the

problem can lead to a drastic improvement of the learning behavior.
Our qualitative interpretations seem to indicate that the ob­

served effects should not be restricted to the small examples consi­
dered in this paper. It would be very valuable, however, to have
corresponding analytical results.

REFERENCES

1. "Parallel Distributed Processing: Explorations in the Microstruc­
ture of Cognition", vol. 1: "Foundations", ed. by D.E. Rumelhart
and J.L. McClelland (MIT Press, Cambridge), 1986, Chapters 7 & 8.

2. Y. Ie Cun, in "Disordered Systems and Biological Organization",
ed . by E. Bienenstock, F. Fogelman Soulie, and G. Weisbuch (Sprin­
ger, Berlin), 1986, pp. 233-240.

3. D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Nature 323, 533
(1986). -

4. M.L. Minsky and S. Papert, "Perceptrons" (MIT Press, Cambridge),
1969.

5. W.S. Stornetta and B.A. Huberman, IEEE Conference on "Neural Net­
works", San Diego, California, 21-24 June 1987.

