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Abstract 

We have developed a neural network which consists of cooperatively inter­
connected Grossberg on-center off-surround subnets and which can be used to 
optimize a function related to the log likelihood function for decoding convolu­
tional codes or more general FIR signal deconvolution problems. Connections in 
the network are confined to neighboring subnets, and it is representative of the 
types of networks which lend themselves to VLSI implementation. Analytical and 
experimental results for convergence and stability of the network have been found. 
The structure of the network can be used for distributed representation of data 
items while allowing for fault tolerance and replacement of faulty units. 

1 Introd uction 

In order to study the behavior of locally interconnected networks, we have focused 
on a class of "trellis-structured" networks which are similar in structure to multilayer 
networks [5] but use symmetric connections and allow every neuron to be an output. 
We are studying such· locally interconnected neural networks because they have the 
potential to be of great practical interest. Globally interconnected networks, e.g., 
Hopfield networks [3], are difficult to implement in VLSI because they require many 
long wires. Locally connected networks, however, can be designed to use fewer and 
shorter wires. 

In this paper, we will describe a subclass of trellis-structured networks which op­
timize a function that, near the global minimum, has the form of the log likelihood 
function for decoding convolutional codes or more general finite impulse response sig­
nals. Convolutional codes, defined in section 2, provide an alternative representation 
scheme which can avoid the need for global connections. Our network, described in 
section 3, can perform maximum likelihood sequence estimation of convolutional coded 
sequences in the presence of noise. The performance of the system is optimal for low 
error rates. 

The specific application for this network was inspired by a signal decomposition 
network described by Hopfield and Tank [6]. However, in our network, there is an 
emphasis on local interconnections and a more complex neural model, the Grossberg 
on-center off-surround network [2], is used. A modified form of the Gorssberg model 
is defined in section 4. Section 5 presents the main theoretical results of this paper. 
Although the deconvolution network is simply a set of cooperatively interconnected 
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on-center off-surround subnetworks, and absolute stability for the individual subnet­
works has been proven [1], the cooperative interconnections between these subnets 
make a similar proof difficult and unlikely. We have been able, however, to prove 
equiasymptotic stability in the Lyapunov sense for this network given that the gain 
of the nonlinearity in each neuron is large. Section 6 will describe simulations of the 
network that were done to confirm the stability results. 

2 Convolutional Codes and MLSE 

In an error correcting code, an input sequence is transformed from a b-dimensional 
input space to an M -dimensional output space, where M ~ b for error correction 
and/ or detection. In general, for the b-bit input vector U = (U1, . •• ,Ub) and the M­
bit output vector V = (VI, ... , VM), we can write V = F( U1, . . . ,Ub). A convolutional 
code, however, is designed so that relatively short subsequences of the input vector 
are used to determine subsequences of the output vector. For example, for a rate 1/3 
convolutional code (where M ~ 3b), with input subsequences oflength 3, we can write 
the output, V = (VI, ... , Vb) for Vi = (Vi,I, Vi,2, Vi,3), of the encoder as a convolution 
of the input vector U = (UI, ... , Ub, 0, 0) and three generator sequences 

go = (11 1) gi = (1 1 0) g2 = (0 1 1). 

This convolution can be written, using modulo-2 addition, as 

Vi= (1) 
k=max{I,i-2) 

In this example, each 3-bit output subsequence, Vi, of V depends only on three 
bits of the input vector, i.e., Vi = I( Ui-2, Ui-I, Ui). In general, for a rate l/n code, the 
constraint length, K, is the number of bits of the input vector that uniquely determine 
each n-bit output subsequence. In the absence of noise, any subsequences in the 
input vector separated by more than K bits (i.e., that do not overlap) will produce 
subsequences in the output vector that are independent of each other. 

If we view a convolutional code as a special case of block coding, this rate 1/3, 
K = 3 code converts a b-bit input word into a codeword of length 3(b + 2) where 
the 2 is added by introducing two zeros at the end of every input to "zero-out" the 
code. Equivalently, the coder can be viewed as embedding 2b memories into a 23{b+2L 
dimensional space. The minimum distance between valid memories or codewords in 
this space is the free distance of the code, which in this example is 7. This implies 
that the code is able to correct a minimum of three errors in the received signal. 

For a convolutional code with constraint length K, the encoder can be viewed as 
a finite state machine whose state at time i is determined by the K - 1 input bits, 
Ui-k, ... , Ui-I. The encoder can also be represented as a trellis graph such as the one 
shown in figure 1 for a K = 3, rate 1/3 code. In this example, since the constraint 
length is three, the two bits Ui-2 and Ui-I determine which of four possible states the 
encoder is in at time i . In the trellis graph, there is a set of four nodes arranged in a 
vertical column, which we call a stage, for each time step i. Each node is labeled with 
the associated values of Ui-2 and Ui-1. In general, for a rate l/n code, each stage of 
the trellis graph contains 2K -1 nodes, representing an equal number of possible states. 
A trellis graph which contains S stages therefore fully describes the operation of the 
encoder for time steps 1 through S. The graph is read from left to right and the upper 
edge leaving the right side of a node in stage i is followed if Ui is a zero; the lower edge 
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Figure 1: Part of the trellis-code representation for a rate 1/3, K = 3 convolutional 
code. 

if Ui is a one. The label on the edge determined by Ui is Vi, the output of the encoder 
given by equation 1 for the subsequence Ui-2, Ui-I, Ui. 

Decoding a noisy sequence that is the output of a convolutional coder plus noise 
is typically done using a maximum likelihood sequence estimation (MLSE) decoder 
which is designed to accept as input a possibly noisy convolutional coded sequence, R, 
and produce as output the maximum likelihood estimate, V, of the original sequence, 
V. If the set of possible n(b+2)-bit encoder output vectors is {Xm : m = 1, ... , 2n(b+2)} 
and Xm,i is the ith n-bit subsequence of Xm and ri is the ith n-bit subsequence of R 
then 

b 

V = argmax II P(ri I Xm,i) 
Xm i=l 

(2) 

That is, the decoder chooses the Xm that maximizes the conditional probability, given . 
X m , of the received sequence. 

A binary symmetric channel (BSC) is an often used transmission channel model in 
which the decoder produces output sequences formed from an alphabet containing two 
symbols and it is assumed that the probability of either of the symbols being affected 
by noise so that the other symbol is received is the same for both symbols. In the 
case of a BSC, the log of the conditional probability, P( ri I Xm,i), is a linear function 
of the Hamming distance between ri and Xm,i so that maximizing the right side of 
equation 2 is equivalent to choosing the Xm that has the most bits in common with 
R. Therefore, equation 2 can be rewritten as 

(3) 

where Xm,i,l is the lth bit of the ith subsequence of Xm and fa (b) is the indicator 
function: fa(b) = 1 if and only if a equals b. 

For the general case, maximum likelihood sequence estimation is very expensive 
since the number of possible input sequences is exponential in b. The Viterbi algo­
rithm [7], fortunately, is able to take advantage of the structure of convolutional codes 
and their trellis graph representations to reduce the complexity of the decoder so that 
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it is only exponential in I( (in general K ~ b). An optimum version of the Viterbi al­
gorithm examines all b stages in the trellis graph, but a more practical and very nearly 
optimum version typically examines approximately 5K stages, beginning at stage i, 
before making a decision about Ui. 

3 A Network for MLSE Decoding 

The structure of the network that we have defined strongly reflects the structure of a 
trellis graph. The network usually consists of 5]( subnetworks, each containing 2K - 1 

neurons. Each subnetwork corresponds to a stage in the trellis graph and each neuron 
to a state. Each stage is implemented as an "on-center off-surround" competitive 
network [2], described in more detail in the next section, which produces as output a 
contrast enhanced version of the input. This contrast enhancement creates a "winner 
take all" situation in which, under normal circumstances, only one neuron in each 
stage -the neuron receiving the input with greatest magnitude - will be on. The 
activation pattern of the network after it reaches equilibrium indicates the decoded 
sequence as a sequence of "on" neurons in the network. If the j-th neuron in subnet i, 
Ni,i is on, then the node representing state j in stage i lies on the network's estimate 
of the most likely path. 

For a rate lin code, there is a symmetric cooperative connection between neurons 
Ni,j and Ni+1 ,k if there is an edge between the corresponding nodes in the trellis 
graph. If (xi,i,k,l, . .. , Xi,j,k,n) are the encoder output bits for the transition between 
these two nodes and (ri,!, ... , ri,n) are the received bits, then the connection weight 
for the symmetric cooperative connection between Ni,i and Ni+1,k is 

1 n 
m "" k--"I. (X "" k/) ',J, - L.J ri I ',J" 

n 1=1 ' 

If there is no edge between the nodes, then mi,i,k = o. 

(4) 

Intuitively, it is easiest to understand the action of the entire network by exam­
ining one stage. Consider the nodes in stage i of the trellis graph and assume that 
the conditional probabilities of the nodes in stages i - 1 and i + 1 are known. (All 
probabilities are conditional on the received sequence.) Then the conditional proba­
bility of each node in stage i is simply the sum of the probabilities of each node in 
stages i - 1 and i + 1 weighted by the conditional transition probabilities. If we look 
at stage i in the network, and let the outputs of the neighboring stages i - 1 and 
i + 1 be fixed with the output of each neuron corresponding to the "likelihood" of 
the corresponding state at that stage, then the final outputs of the neurons M,i will 
correspond to the "likelihood" of each of the corresponding states. At equilibrium, the 
neuron corresponding to the most likely state will have the largest output. 

4 The Neural Model 

The "on-center off-surround" network[2] is used to model each stage in our network. 
This model allows the output of each neuron to take on a range of values, in this 
case between zero and one, and is designed to support contrast enhancement and 
competition between neurons. The model also guarantees that the final output of 
each neuron is a function of the relative intensity of its input as a fraction of the total 
input provided to the network. 
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Using the "on-center off-surround" model for each stage and the interconnection 
weights, mi,j,k, defined in equation 4, the differential equation that governs the in­
stantaneous activity of the neurons in our deconvolution network with S stages and 
N states in each stage can be written as 

N 

Ui,j = -Aui,j + (B - Ui ,j) (f(Ui,j) + I)mi-I,k,jf(Ui-I,k) + mi,j,kf(Ui+1,k)]) 

N klJ (5) 

- (C + Ui,j) L (f( Ui,k) + L[mi-I,k,t!( Ui-I,k) + mi,l,kf( Ui+1,k)]) 
k"lj 1=1 

where f(x) = (1 + e-'\X)-I, oX is the gain of the nonlinearity, and A, B, and Care 
constants 

For the analysis to be presented in section 5, we note that equation 5 can be 
rewritten more compactly in a notation that is similar to the equation for additive 
analog neurons given in [4]: 

S N 

U' . - Au" '"' '"'Cu ' ·S· . k 1!(Uk I) 1'. .. k 1!(Uk I)) &,} - - &,} - L..J L..J &,} &,}, , ,- &,3" , (6) 
k=I/=I 

where, for 1 ~ I ~ N, 

S· " 1- 1 &,},&, -

S· " 11 = ~m ' I &,},&-, l.J &-I"q 
q 

S .. · 1/- ~m' I &,},&+ , - l.J &,q, 

1'. . . .. - B 
&,},&,} -

1'. .. . I = -C V I ~ J' &,},&, r 
Ti j i-I I = Bmi_l I j - C E mi-l I q 

'" , , q¢j " (7) 
q 

Si,j,k,1 = 0 V k ¢ {i - 1, i, i + 1} 
1'. ... II - Bm"1 C ~ m' I &,3,&+ , - I,), - l.J &,q, 

q"lj 

To eliminate the need for global interconnections within a stage, we can add two 
summing elements to calculate 

N N N 

Xi = L f(Xi,j) and Ji = L L [mi-l,k,j!( Ui-l,k) + mi,j,kf( Ui+1,k)] (8) 
j=1 j=I k=I 

Using these two sums allows us to rewrite equation 5 as 

U· . = -Au' . + (B + C)(f(u· .) + L .) - U· ·(X· + J.) &,} &,} &,) &,) &,} & & (9) 

This form provides a more compact design for the network that is particularly suited 
to implementation as a digital filter or for use in simulations since it greatly reduces 
the calculations required, 

5 Stability of the Network 

The end of section 3 described the desired operation of a single stage, given that the 
outputs of the neighboring stages are fixed. It is possible to show that in this situation 
a single stage is stable. To do this, fix f( Uk,/) for k E {i - 1, i + 1} so that equation 6 
can be written in the form originally proposed by Grossberg [2]: 

N N 

Ui,j = -Auj,j + (B - Uj,j) (Ii,j + f(Ui,j)) - (Ui,j + C)(L Ii,k + L !(Ui,k)) (10) 
k=1 k=1 
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where Ii,; = 2:1'=1 [mi-l,k,jf( Ui-l,k) + mi,j,kf( Ui+I,k)]. 
Equation 10 is a special case of the more general nonlinear system 

Xi = ai(xi) (bi(Xi) - t Ci,kdk(Xk)) 
k=1 

(11) 

where: (1) ai(xi) is continuous and ai(xd > 0 for Xi 2: OJ (2) bi(Xi) is continuous 
for Xi ~ OJ (3) Ci,k = Ck,ij and (4) di(Xi) ~ 0 for all Xi E (-00,00). Cohen and 
Grossberg [1] showed that such a system has a global Lyapunov function: 

(12) 

and that, therefore, such a system is equiasymptotically stable for all constants and 
functions satisfying the four constraints above. In our case, this means that a single 
stage has the desired behavior when the neighboring stages are fixed. IT we take the 
output of each neuron to correspond to the likelihood of the corresponding state then, 
if the two neighboring stages are fixed, stage i will converge to an equilibrium point 
where the neuron receiving the largest input will be on and the others will be off, just 
as it should according to section 2. 

It does not seem possible to use the Cohen-Grossberg stability proof for the entire 
system in equation 5. In fact, Cohen and Grossberg note that networks which allow 
cooperative interactions define systems for which no stability proof exists [1]. 

Since an exact stability proof seems unlikely, we have instead shown that in the 
limit as the gain, A, of the nonlinearity gets large the system is asymptotically stable. 
Using the notation in [4], define Vi = f(Ui) and a normalized nonlinearity J(.) such 
that J-l(Vi) = AUi. Then we can define an energy function for the deconvolution 
network to be 

1 1 ( ) ~VIc'1 - 1 E - -- T:. V.· ·Vi - - -A - S ·· Vi - d - 2 L 1,.1,k,l 1,.1 k,l L A L 1,.1,k,l k,l 1 f (() ( 
i,j,k,l i,j k,l 2 

(13) 

The time derivative of E is 

. L dVii ( L L - - --' -Au·· - U· . S· · Vi T· · Vi E - dt I,) 1,.1 1,.1,k,l k,l + 1,.1,k,l k,l 
i,i k,l k,l 

1 ~ (VIc ,1 - 1 ) 
- "X L.i Si,j,k,l } l. f- (()d( 

k,l 2 

(14) 

It is difficult to prove that E is nonpositive because of the last term in the parentheses. 
However, for large gain, this term can be shown to have a negligible effect on the 
derivative. 

It can be shown that for f(u) = (1 + C>'U)-I, Ii' l-I(()d( is bounded above 
2 

by log(2). In this deconvolution network, there are no connections between neurons 
unless they are in the same or neighboring stages, i.e., Si,i,k,l = 0 for Ii - kl > 1 and 
1 is restricted so that 0 ~ 1 ~ S, so there are no more than 3S non-zero terms in the 
problematical summation. Therefore, we can write that 

1 ~VIc ' 1 _ 
lim -, L Si,j,k,l f-l(() d( = 0 

>'-00 A k,l t 



598 

Then, in the limit as ). -- 00, the terms in parentheses in equation 14 converge to Ui 

. . h li E· ~ dVi j. U· th h· I ·t thO III equatIOn 6, so t at m = L..J --' Ui. smg e c am ru e, we can reWrl e IS 
.\-+00 .. dt 

t,) 

as 

E.n~J = - t= (d~J )'( d~/-l (V;J») 
It can also be shown that that, if 1(·) is a monotonically increasing function then 

~ I-I (Vi) > 0 for all Vi. This implies that for all u = (Ui,b . .• ,UN,S), lim>.-+oo E S; 0, 
and, therefore, for large gains, E as defined in equation 13 is a Lyapunov function for 
the system described by equation 5 and the network is equiasymtotically stable. 

If we apply a similar asymptotic argument to the energy function, equation 13 
reduces to 

1 
E - ~ T: . k IV.· . Vik I - - '2 L..J ',3" 1,3 , 

i,j,k,1 

(15) 

which is the Lyapunov function for a network of discontinuous on-off neurons with 
interconnection matrix T. For the binary neuron case, it is fairly straight forward to 
show that the energy function has minima at the desired decoder outputs if we assume 
that only one neuron in each stage may be on and that Band C are appropriately 
chosen to favor this. However, since there are 0(52 N) terms in the disturbance 
summation in equation 15, convergence in this case is not as fast as for the derivative 
of the energy function in equation 13, which has only 0(5) terms in the summation. 

6 Simulation Results 

The simulations presented in this section are for the rate 1/3, K = 3 convolutional code 
illustrated in figure 1. Since this code has a constraint length of 3, there are 4 possible 
states in each stage and an MLSE decoder would normally examine a minimum of 
5K subsequences before making a decision, we will use a total of 16 stages. In these 
simulations, the first and last stage are fixed since we assume that we have prior 
knowledge or a decision about the first stage and zero knowledge about the last stage. 
The transmitted codeword is assumed to be all zeros. 

The simulation program reads the received sequence from standard input and uses 
it to define the interconnection matrix W according to equation 4. A relaxation 
subroutine is then called to simulate the performance of the network according to an 
Euler discretization of equation 5. Unit time is then defined as one RC time constant of 
the unforced system. All variables were defined to be single precision (32 bit) floating 
point numbers. 

Figure 2a shows the evolution of the network over two unit time intervals with the 
sampling time T = 0.02 when the received codeword contains no noise. To interpret 
the figure, recall that there are 16 stages of 4 neurons each. The output of each stage 
is a vertical set of 4 curves. The upper-left set is the output of the first stage; the 
upper-most curve is the output of the first neuron in the stage. For the first stage, 
the first neuron has a fixed output of 1 and the other neurons have a fixed output of 
o. The outputs of the neurons in the last stages are fixed at an intermediate value to 
represent zero a priori knowledge about these states. Notice that the network reaches 
an equilibrium point in which only the top neurons in each state (representing the "00" 
node in figure 1) are on and all others are off. This case illustrates that the network 
can correctly decode an unerrored input and that it does so rapidly, i.e., in about one 
time constant. In this case, with no errors in the input, the network performs the 
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Figure 2: Evolution of the trellis network for (a) unerrored input, (b) input with burst 
errors: R is 000 000 000 000 000 000 000 000 111 000 000 000 000 000 000. A = 10., 
A = 1.0, B = 1.0, C = 0.75, T = 0.02. The initial conditions are XI,1 = 1., xI,.i = 0.0, 
X16,j = 0.2, all other Xi,j = 0.0. 

same function as Hopfield and Tank's network and does so quite well. Although we 
have not been able to prove it analytically, all our simulations support the conjecture 
that if xi,AO) = ~ for all i and j then the network will always converge to the global 
minimum. 

One of the more difficult decoding problems for this network is the correction of 
a burst of errors in a transition subsequence. Figure 2b shows the evolution of the 
network when three errors occur in the transition between stages 9 and 10. Note that 
10 unit time intervals are shown since complete convergence takes much longer than 
in the first example. However, the network has correctly decoded many of the stages 
far from the burst error in a much shorter time. 

If the received codeword contains scattered errors, the convolutional decoder should 
be able to correct more than 3 errors. Such a case is shown in figure 3a in which the 
received codeword contains 7 errors. The system takes longest to converge around two 
transitions, 5-6 and 11-12. The first is in the midst of consecutive subsequences which 
each have one bit errors and the second transition contains two errors. 

To illustrate that the energy function shown in equation 13 is a good candidate 
for a Lyapunov function for this network, it is plotted in figure 3b for the three cases 
described above. The nonlinearity used in these simulations has a gain of ten, and, as 
predicted by the large gain limit, the energy decreases monotonically. 

To more thoroughly explore the behavior of the network, the simulation program 
was modified to test many possible error patterns. For one and two errors, the program 
exhaustively tested each possible error pattern. For three or more errors, the errors 
were generated randomly. For four or more errors, only those errored sequences for 
which the MLS estimate was the sequence of all zeros were tested. The results of 
this simulation are summarized in the column labeled "two-nearest" in figure 4. The 
performance of the network is optimum if no more than 3 errors are present in the 
received sequence, however for four or more errors, the network fails to correctly decode 
some sequences that the MLSE decoder can correctly decode. 
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Figure 3: (a) Evolution of the trellis network for input with distributed errors. The 
input, R, is 000 010 010 010 100 001 000 000 000 000 110 000 000 000 000. The 
constants and initial conditions are the same as in figure 2. (b) The energy function 
defined in equation 13 evaulated for the three simulations discussed. 

errored number of number of errors 
bits test vectors tvo-nearest four-nearest 

0 1 0 0 

1 39 0 0 

2 500 0 0 

3 500 0 0 

4 500 7 0 

5 500 33 20 
6 500 72 68 

7 500 132 103 

Total 2500 244 191 

Figure 4: Simulation results for a deconvolution network for a K = 3, rate 1/3 code. 
The network parameters were: .x = 15, A = 6, B = 1, C = 0.45, and T = 0.025. 

For locally interconnected networks, the major concern is the flow of information 
through the network. In the simulations presented until now, the neurons in each stage 
are connected only to neurons in neighboring stages. A modified form of the network 
was also simulated in which the neurons in each stage are connected to the neurons 
in the four nearest neighboring stages. To implement this network, the subroutine to 
initialize the connection weights was modified to assign a non-zero value to Wi,j ,i+2,k. 
This is straight-forward since, for a code with a constraint length of three, there is a 
single path connecting two nodes a distance two apart. 

The results of this simulation are shown in the column labeled "four-nearest" in 
figure 4. It is easy to see that the network with the extra connections performs better 
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than the previous network. Most of the errors made by the nearest neighbor network 
occur for inputs in which the received subsequences ri and ri+1 or ri+2 contain a total 
of four or more errors. It appears that the network with the additional connections 
is, in effect, able to communicate around subsequences containing errors that block 
communications for the two-nearest neighbor network. 

7 Summary and Conclusions 

We have presented a locally interconnected network which minimizes a function that 
is analogous to the log likelihood function near the global minimum. The results of 
simulations demonstrate that the network can successfully decode input sequences 
containing no noise at least as well as the globally connected Hopfield-Tank [6] de­
composition network. Simulations also strongly support the conjecture that in the 
noiseless case, the network can be guaranteed to converge to the global minimum. In 
addition, for low error rates, the network can also decode noisy received sequences. 

We have been able to apply the Cohen-Grossberg proof of the stability of "on­
center off-surround" networks to show that each stage will maximize the desired local 
"likelihood" for noisy received sequences. We have also shown that, in the large gain 
limit, the network as a whole is stable and that the equilibrium points correspond to 
the MLSE decoder output. Simulations have verified this proof of stability even for rel­
atively small gains. Unfortunately, a proof of strict Lyapunov stability is very difficult, 
and may not be possible, because of the cooperative connections in the network. 

This network demonstrates that it is possible to perform interesting functions even 
if only localized connections are allowed, although there may be some loss of perfor­
mance. If we view the network as an associative memory, a trellis structured network 
that contains N S neurons can correctly recall 28 memories. Simulations of trellis net­
works strongly suggest that it is possible to guarantee a non-zero minimum radius of 
attraction for all memories. We are currently investigating the use of trellis structured 
layers in multilayer networks to explicitly provide the networks with the ability to 
tolerate errors and replace faulty neurons. 
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