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ABSTRACT 
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A single cell theory for the development of selectivity and 
ocular dominance in visual cortex has been presented previously 
by Bienenstock, Cooper and Munrol. This has been extended to a 
network applicable to layer IV of visual cortex2 . In this paper 
we present a mean field approximation that captures in a fairly 
transparent manner the qualitative, and many of the 
quantitative, results of the network theory. Finally, we consider 
the application of this theory to artificial neural networks and 
show that a significant reduction in architectural complexity is 
possible. 

A SINGLE LAYER NETWORK AND THE MEAN FIELD 
APPROXIMATION 

We consider a 
receive signals from 
the layer (Figure 1). 

single layer network of ideal neurons which 
outside of the layer and from cells within 
The activity of the ith cell in the network is 

c' - m' d + ~ T .. c' 
1 - 1 ""' ~J J' 

J 
(1) 

d is a vector of afferent signals to the network. Each cell 
receives input from n fibers 
through the matrix of synapses 
is then transmitted through 
synapses L. 

outside of the cortical network 
mi' Intra-layer input to each cell 
the matrix of cortico-cortical 
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Figure 1: The general single layer recurrent 
network. Light circles are the LGN -cortical 
synapses. Dark circles are the (non-
modifiable) cortico-cortical synapses. 

We now expand the response of the i th cell into individual 
terms describing the number of cortical synapses traversed by 
the signal d before arriving through synapses Lij at cell i. 
Expanding Cj in (1), the response of cell i becomes 

ci = mi d + l: ~j mj d + l: ~jL Ljk mk d + 2: ~j 2Ljk L Lkn mn d + ... (2) 
J J K J K' n 

Note that each term contains a factor of the form 

This factor describes the first order effect, on cell q, of the 
cortical transformation of the signal d. The mean field 
approximation consists of estimating this factor to be a constant, 
independant of cell location 

(3) 
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This assumption does not imply that each cell in the network is 
selective to the same pattern, (and thus that mi = mj). Rather, 
the assumption is that the vector sum is a constant 

This amounts to assuming that each cell in the network is 
surrounded by a population of cells which represent, on average, 
all possible pattern preferences. Thus the vector sum of the 
afferent synaptic states describing these pattern preferences is a 
constant independent of location. 

Finally, if we assume that the lateral connection strengths are 
a function only of i-j then Lij becomes a circular matrix so that 

r. Lij ::: ~ Lji = Lo = constan t. 
1 J 

Then the response of the cell i becomes 

(4) 

for I ~ I < 1 

where we define the spatial average of cortical cell activity C = in 
d, and N is the average number of intracortical synapses. 

Here, in a manner similar to that in the theory of magnetism, 
we have replaced the effect of individual cortical cells by their 
average effect (as though all other cortical cells can be replaced 
by an 'effective' cell, figure 2). Note that we have retained all 
orders of synaptic traversal of the signal d. 

Thus, we now focus on the activity of the layer after 
'relaxation' to equilibrium. In the mean field approximation we 
can therefore write 

(5) 
where the mean field 

a =am 
with 



686 

and we asume that 
inhibitory). 

Lo < 0 (the network is, on average, 

Afferent > 
Signals 

d 

Figure 2: The single layer mean field network. 
Detailed connectivity between all cells of the 
network is replaced with a single (non­
modifiable) synapse from an 'effective' cell. 

LEARNING IN THE CORTICAL NETWORK 

We will first consider evolution of the network according to a 
synaptic modification rule that has been studied in detail, for 
single cells, elsewhere!· 3. We consider the LGN - cortical 
synapses to be the site of plasticity and assume for maximum 
simplicity that there is no modification of cortico-cortical 
synapses. Then 

(6) 

. 
Lij = O. 

In what follows c denotes the spatial average over cortical cells, 

while Cj denotes the time averaged activity of the ith cortical cell. 
The function cj> has been discussed extensively elsewhere. Here 
we note that cj> describes a function of the cell response that has 
both hebbian and anti-hebbian regions. 
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This leads to a very complex set of non-linear stochastic 
equations that have been analyzed partially elsewhere2 . In 
general, the afferent synaptic state has fixed points that are 
stable and selective and unstable fixed points that are non­
selective!, 2. These arguments may now be generalized for the 
network. In the mean field approximation 

(7) 

The mean field, a has a time dependent component m. This 
varies as the average over all of the network modifiable 
synapses and, in most environmental situations, should change 
slowly compared to the change of the modifiable synapses to a 
single cell. Then in this approximation we can write 

• 
(mi(a)-a) = cj>[mi(a) - a] d. (8) 

We see that there is a mapping 

mi' <-> mica) - a (9) 

such that for every mj(a) there exists a corresponding (mapped) 
point mj' which satisfies 

the original equation for the mean field zero theory. It can be 
shown 2, 4 that for every fixed point of mj( a = 0), there exists a 
corresponding fixed point mj( a) with the same selectivity and 
stability properties. The fixed points are available to the 
neurons if there is sufficient inhibition in the network (ILo I is 
sufficiently large). 

APPLICATION OF THE MEAN FIELD NETWORK TO 
LAYER IV OF VISUAL CORTEX 

Neurons in the primary visual cortex of normal adult cats are 
sharply tuned for the orientation of an elongated slit of light and 
most are activated by stimulation of either eye. Both of these 
properties--orientation selectivity and binocularity--depend on 
the type of visual environment experienced during a critical 
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period of early postnatal development. For example, deprivation 
of patterned input during this critical period leads to loss of 
orientation selectivity while monocular deprivation (MD) results 
in a dramatic shift in the ocular dominance of cortical neurons 
such that most will be responsive exclusively to the open eye. 
The ocular dominance shift after MD is the best known and most 
intensively studied type of visual cortical plasticity. 

The behavior of visual cortical cells in various rearing 
conditions suggests that some cells respond more rapidly to 
environmental changes than others. In monocular deprivation, 
for example, some cells remain responsive to the closed eye in 
spite of the very large shift of most cells to the open eye- Singer 
et. al.5 found, using intracellular recording, that geniculo-cortical 
synapses on inhibitory interneurons are more resistant to 
monocular deprivation than are synapses on pyramidal cell 
dendrites. Recent work suggests that the density of inhibitory 
GABAergic synapses in kitten striate cortex is also unaffected by 
MD during the cortical period 6, 7. 

These results suggest that some LGN -cortical synapses modify 
rapidly, while others modify relatively slowly, with slow 
modification of some cortico-cortical synapses. Excitatory LGN­
cortical synapses into excitatory cells may be those that modify 
primarily. To embody these facts we introduce two types of 
LGN -cortical synapses: those (mj) that modify and those (Zk) 
that remain relatively constant. In a simple limit we have 

and (10) 

We assume for simplicity and consistent with the above 
physiological interpretation that these two types of synapses are 
confined to two different classes of cells and that both left and 
right eye have similar synapses (both m i or both Zk) on a given 
cell. Then, for binocular cells, in the mean field approximation 
(where binocular terms are in italics) 



689 

where dl(r) are the explicit left (right) eye time averaged signals 
arriving form the LGN. Note that a1(r) contain terms from 
modifiable and non-modifiable synapses: 

al(r) = a (ml(r) + zl(r»). 

Under conditions of monocular deprivation, the animal is reared 
with one eye closed. For the sake of analysis assume that the 
right eye is closed and that only noise-like signals arrive at 
cortex from the right eye. Then the environment of the cortical 
cells is: 

d = (di, n) (12) 

Further, assume that the left eye synapses have reached their 
1 r 

selective fixed point, selective to pattern d1• Then (mi' mi ) = 

(m:*, xi) with IXil «lm!*1. Following the methods of BCM, a local 

linear analysis of the <I> - function is employed to show that for 
the closed eye 

Xi = a (1 - }..a)-li.r. (13) 

where A. = NmIN is the ratio of the number modifiable cells to the 
total number of cells in the network. That is, the asymptotic 
state of the closed eye synapses is a scaled function of the mean­
field due to non-modifiable (inhibitory) cortical cells. The scale 
of this state is set not only by the proportion of non-modifiable 
cells, but in addition, by the averaged intracortical synaptic 
strength Lo. 

Thus contrasted with the mean field zero theory the deprived 
eye LGN-cortical synapses do not go to zero. Rather they 
approach the constant value dependent on the average inhibition 
produced by the non-modifiable cells in such a way that the 
asymptotic output of the cortical cell is zero (it cannot be driven 
by the deprived eye). However lessening the effect of inhibitory 
synapses (e.g. by application of an inhibitory blocking agent such 
as bicuculine) reduces the magnitude of a so that one could once 
more obtain a response from the deprived eye. 
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We find, consistent with previous theory and experiment, 
that most learning can occur in the LGN-cortical synapse, for 
inhibitory (cortico-cortical) synapses need not modify. Some 
non-modifiable LGN-cortical synapses are required. 

THE MEAN FIELD APPROXIMATION AND 
ARTIFICIAL NEURAL NETWORKS 

The mean field approximation may be applied to networks in 
which the cortico-cortical feedback is a general function of cell 
activity. In particular, the feedback may measure the difference 
between the network activity and memories of network activity. 
In this way, a network may be used as a content addressable 
memory. We have been discussing the properties of a mean 
field network after equilibrium has been reached. We now focus 
on the detailed time dependence of the relaxation of the cell 
activity to a state of equilibrium. 

Hopfield8 introduced a simple formalism for the analysis of 
the time dependence of network activity. In this model, 
network activity is mapped onto a physical system in which the 
state of neuron activity is considered as a 'particle' on a potential 
energy surface. Identification of the pattern occurs when the 
activity 'relaxes' to a nearby minima of the energy. Thus 
mlmma are employed as the sites of memories. For a Hopfield 
network of N neurons, the intra-layer connectivity required is of 
order N2. This connectivity is a significant constraint on the 
practical implementation of such systems for large scale 
problems. Further, the Hopfield model allows a storage capacity 
which is limited to m < N memories8, 9. This is a result of the 
proliferation of unwanted local minima in the 'energy' surface. 

Recently, Bachmann et al. l 0, have proposed a model for the 
relaxation of network activity in which memories of activity 
patterns are the sites of negative 'charges', and the activity 
caused by a test pattern is a positive test 'charge'. Then in this 
model, the energy function is the electrostatic energy of the 
(unit) test charge with the collection of charges at the memory 
sites 

E = -IlL ~ Qj I J-l- Xj I - L, 
J 

(14) 
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where Jl (0) is a vector describing the initial network activity 
caused by a test pattern, and Xj' the site of the jth memory. L is 
a parameter related to the network size. 

This model has the advantage that storage density is not 
restricted by the the network size as it is in the Hopfield model, 
and in addition, the architecture employs a connectivity of order 
m x N. Note that at each stage in the settling of Jl (t) to a memory 
(of network activity) Xj' the only feedback from the network to 
each cell is the scalar 

~ Q. I Jl- X· I - L 
J J J 

(15) 

This quantity is an integrated measure of the distance of the 
current network state from stored memories. Importantly, this 
measure is the same for all cells; it is as if a single virtual cell 
was computing the distance in activity space between the 
current state and stored states. The result of the computation is 
then broadcast to all of the cells in the network. This is a 
generalization of the idea that the detailed activity of each cell in 
the network need not be fed back to each cell. Rather some 
global measure, performed by a single 'effective' cell is all that is 
sufficient in the feedback. 

DISCUSSION 

We have been discussing a formalism for the analysis of 
networks of ideal neurons based on a mean field approximation 
of the detailed activity of the cells in the network. We find that 
a simple assumption concerning the spatial distribution of the 
pattern preferences of the cells allows a great simplification of 
the analysis. In particular, the detailed activity of the cells of 
the network may be replaced with a mean field that in effect is 
computed by a single 'effective' cell. 

Further, the application of this formalism to the cortical layer 
IV of visual cortex allows the prediction that much of learning in 
cortex may be localized to the LGN-cortical synaptic states, and 
that cortico-cortical plasticity is relatively unimportant. We find, 
in agreement with experiment, that monocular deprivation of 
the cortical cells will drive closed-eye responses to zero, but 
chemical blockage of the cortical inhibitory pathways would 
reveal non-zero closed-eye synaptic states. 
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Finally, the mean field approximation allows the development 
of single layer models of memory storage that are unrestricted 
in storage density, but require a connectivity of order mxN. This 
is significant for the fabrication of practical content addressable 
memories. 
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