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A class of high dens ity assoc iat ive memories is constructed, 
starting from a description of desired properties those should 
exhib it. These propert ies include high capac ity, controllable bas ins 
of attraction and fast speed of convergence. Fortunately enough, the 
resulting memory is implementable by an artificial Neural Net. 

I NfRODUCTION 

Most of the work on assoc iat ive memories has been structure 
oriented, i.e.. given a Neural architecture, efforts were directed 
towards the analysis of the resulting network. Issues like capacity, 
basins of attractions, etc. were the main objects to be analyzed cf., 
e.g. [1], [2], [3], [4] and references there, among others. 

In this paper, we take a different approach, we start by 
explicitly stating the desired properties of the network, in terms of 
capacity, etc. Those requirements are given in terms of axioms (c.f. 
below). Then, we bring a synthesis method which enables one to design 
an architecture which will yield the desired performance. 
Surprisingly enough, it turns out that one gets rather easily the 
following properties: 

(a) High capacity (unlimited in the continuous state-space case, 
bounded only by sphere-packing bounds in the discrete state 
case). 

(b) Guaranteed basins of attractions in terms of the natural 
metric of the state space. 

(c) High speed of convergence in the guaranteed basins of 
attraction. 

Moreover, it turns out that the architecture suggested below is the 
only one which satisfies all our axioms (-desired properties-)I 

Our approach is based on defining a potential and following a 
descent algorithm (e.g., a gradient algorithm). The main design task 
is to construct such a potential (and, to a lesser extent, an 
implementat ion of the descent algorithm via a Neural network). In 
doing so, it turns out that, for reasons described below, it is useful 
to regard each des ired memory locat ion as a -part icle- in the state 
space. It is natural to require now the following requirement from a 

IAn expanded version of this work has been submitted to Phys. Rev. A. 
This work was carried out at the Center for Neural Sc ience, Brown 
University. 
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.eJlOry: 
(Pl) The potential should be linear w.r.t. adding partic les in 

the sense that the potential of two particles should be the sum of the 
potentials induced by the individual particles (i.e •• we do not allow 
interparticles interaction). 

(P2) Part icle locat ions are the only poss ible sites of stable 
.emory locations. 

(P3) The system should be invariant to translations and 
rotations of the coordinates. 

We note that the last requirement is made only for the sake of 
simplicity. It is not essential and may be dropped without affecting 
the results. 

In the sequel. we construct a potential which satisfies the above 
requirements. We refer the reader to [5] for details of the proofs. 
etc. 
Acknowledgements. We would like to thank Prof. L.N. Cooper and C.M. 
Bachmann for many fruitful discussions. In particular. section 2 is 
part of a joint work with them ([6]). 

2. HIGH DENSIlY STORAGE MODEL 

In what follows we present a particular case of a method for the 
construct ion of a high storage dens ity neural memory. We define a 
function with an arbitrary number of minima that lie at preassigned 
points and define an appropriate relaxat ion procedure. The general 
case in presented in [5]. 

Let i 1 ..... i m be a set of m arb itrary d ist inct memories in RN. 
The ·energy· function we will use is: 

m 

~ = - i 2 Q i Iii - ii I-L (1) 

i=l 

where we assume throughout that N ~ 3. L ~ (N - 2). and Qi > 0 and use 
1 ••• 1 to denote the Euclidean distance. Note that for L = 1. NF3. ~ 
is the electrostat ic potent ial induced by negat ive fixed part ic les 
with charges -Qi. This ·energy· funct ion possesses global minima at 
i 1 ••••• i m (where ~(ii) .. -) and has no local minima except at these 
points. A rigorous proof is presented in [5] together with the 
complete characterization of functions having this property. 

As a relaxation procedure. we can choose any dynamical system for 
which ~ is strictly decreasing. uniformly in compacts. In this 
instance. the theory of dynamical systems guarantees that for almost 
any initial data. the trajectory of the system converges to one of the 
desired points i 1 ••••• i m• However. to give concrete results and to 
further exploit the resemblance to electrostatic. consider the 
relaxation: 
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. 

.. -= E-
II Il -= - (2) 

i=1 

where for N=3. L=1. equation (2) describes the motion of a positive 
t~st particle in the electrost!tic f~eld ~ generated by the negative 
f1xed charges -Q1 •••• L -~ at xl ••••• xm• 

Since the field E;i is just minus the gradient of e. it is clear 
that along trajectories of (2). de/dt ~ O. with equality only at the 
fbed points of (2). which are exactly the stat ionary po ints of e. 

Therefore. using (2) as the relaxation procedure. we can conclude 
that entering at any ~(O). the system converges to a stationary point 
of e. The space of inputs is partitioned into m domains of 
attraction. each one corresponding to a different memory. and the 
boundaries (a set of measure zero). on which p(O) will converge to a 
saddle point of e. 

We can now explain why e~ has no spurious local minima. at least 
for L=1. N=3. using elementary physical arguments. Suppose e has a 
spurious local minima at y ~ xl ••••• xm• then in a s!!all neighborhood 
of y which does not include any of the xi. the field ~ points towards 
y. Thus. on any closed surface in that neighborhood. the integral of 
the normal inward component of ~ is positive. However. this integral 
is just the total charge included inside the surface. which is zero. 
Thus we arrive at a contradiction. so y can not be a local minimum. 

We now have a relaxation procedure. such that almost any ~(O) is 
attracted by one of the xi. but we have not yet spec ified the shapes 
of the basins of attraction. By varying the charges Qi. we can 
enlarge one basin of attraction at the expense of the others (and vice 
versa). 

Even when all of the Qi are eqmal. the position of the xi might 
cause ~(O) not to converge to the closest memory. as emphasized in the 
example in fig. 1. However. let r = min1~i~j~mlxi - i j 1 be the 

minimal distance between any two memoriesJ then if I~(O) - ii I~ ,[ • .,lIk) 

it can be shown that ~(O) will converge to xi. (provided that k L +! =--
N+i 

11). Thus. if thamemories are densely packed in a hypersphere. by 
choosing k large enough (i.e. enlarging the parameter L). convergence 
to the closest memory for any -interesting- input. that is an input 
i;:(O) with a distinct closest memory. is guaranteed. The detailed 
proof of the above property is given in [5]. It is based on bound ing 
the number of x j • j~i. in a hypersphere of radius R(Rlr) around xi. by 
[2R/r + 1]N. tlien bounding the magnitude of the field induced 'I. any 
Xj. j~i. on the boundar, of such a hypersphere by (R-li;:(O)-xiP- +1). 

and finally integrat ing to show that for I~(O)-ii 15. (i~~I/~ ,with e<1. 

the convergence of ~(O) to xi is within finite time T. which behaves 
like e L+2 for L » 1 and e < 1 and fixed. Intuitively the reason for 
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this behaviour 
equat ion (2) • 
convergence rate 

'. 

,I 

I 

" 

Figure 1 

R » I and 0 « 1 

is the short-range nature of the fields used in 
Because of this. we also expect extremely low 
for inputs ~(O) far away from all of the xi. 

The radial nature of these fields suggests a 
way to overcome this difficulty. that is to 
increase the convergence rate from points very far 
away. without disturbing all of the aforementioned 
desirable properties of the model. Assume that we 
know in advance that all of the xi lie inside some 
large hypersphere S around the origin. Then. at 
any point ~ outside S. the field ~ has a positive 
projection radially into S. By adding a long­
range force to B-. effective only outside of S. we 
can hasten the mgvement towards S. from points far 
away, without creating additional minima inside of 
S. As an example the force (-~ for ji , S, 0 for 
ji 8 S) will pull any test input ji(O) to 
the boundary of S within the small finite time T ~ 
1/1SI. and from then on the system wil} behave 
inside S according to the original field Bu. 

Up to this point. our derivations have been 
for a continuous system. but from it we can deduce 
a discrete system. We shall do this mainly for a 
clearer comparison between our high density memory 
model and the discrete version of Hopfield's 
model. Before continuing in that direction. note 
that our continuous system has unl imited storage 
capacity unlike Hopfield's continuous system. 
which like his discrete model, has limited 
capac ity. 

For the discrete system, assume that the Xi are composed of 
elements ±1 and replace the Euclid\an dJstance in (1) with the 
normal ized Hamming 4 istance lii1 - ~21 = 1; I '=1111~ - 11~ I. This places 
the vec tors :i i on the un it hypersphere. J J J 

The relaxation process for the discrete system will be of the 
type defined in Hopfield's model in [11 Choose at random a 
component to be updated (that is, a neighbor ~' of ii such that 
Iii' - iii = 2/N). calculate the "energy" difference. r.e = ~(ii~-~(ii). 
and only if r.e < O. change this component, that is: 

11· ~f.l. sign(~(~~ - ~(ji», 
1 1 

(3) 

where e(ii) is the potent ial energN in (1). Since there is a finite 
number of possible ~ vectors (2), convergence in finite time is 
guaranteed. 

This relaxation procedure is rigid since the movement is limited 
to points with components +1. Therefore. although the local minima of 
~(ii) defined in (2) are only at the desired points Xi' the relaxation 
may get stuck at some ii which is not a stationary point of ~(ii). 
However, the short range behaviour of the potential e(~), unlike the 
long-range behavior of the quadratic potential used by Hopfield, gives 
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rise to results similar to those we have quoted for the continuous 
ll10del (equation (1». 

Specifically. let the stored me~ories i 1 ••••• i m be separated from 
one another by having at least pN different components (0 < p i 1/2 
and p fixed), and let ~(O) agree up to at least one ii with at most 
epN errors between them (0 i e < 1/2. with e fixed), then jHO) 
converges monotonically to i i by the relaxat ion procedure given in 
equat ion (3). 

This result holds independently of m. provided that N is large 

enough (typically. Np In(1~e) L 1) and L is chosen so that f i In(!~e) 

The proof is constructed by bounding the cummulative effect of terms 

I~ - ii rL. j;&i. to t~e energy difference Se and showing that it is 
dominafed by I~ - ii 1 L. For details. we refer the reader again to 
[5]. 

Note the importance of this property: unlike the Hopfield model 
which is limited to miN. the suggested system is optimal in the 
sense of Information Theory. since for every set of memories i 1 ••••• i m 
separated from each other by a Hamming distance pN. up to 1/2 pN 
errors in the input can be corrected. provided that N is large and L 
properly chosen. 

As for the complexity of the system. we note that the nonlinear 
operat ion a -L. for a}O and L integer (which is at (the heart of our 
system computationally)' is equivalent to e-Lln a) and can be 
implemented. therefore. by a simple electrical circuit composed of 
diodes. which have exponential input-output characteristics. and 
resistors. which can carry out the necessary multiplications (cf. the 
implementation of section 3). 

Further. since both liil and I~I are held fixed in the discrete 
system. where all states are on the unit hypersphere. I~ - ii 12 is 
equivalent to the inner product of ~ and ii' up to a constant. 

To conclude. the suggested model involves about m'N 
multiplications. followed by m nonlinear operations. and then m'N 
additions. The original model of Hopfield involves Nf multiplications 
and additions. and then N nonlinear operations. but is limited to 
miN. Therefore. whenever the Hopfield model is applicable the 
complexity of both ll10dels is comparable. 

3. IMPLEMENI'ATION 

We propose below one possible network which implements the 
discrete time and space version of the model described above. An 
implementation for the ocntinuous time case. which is even simpler. is 
also hinted. We point out that the implementation described below is 
by no means unique. (and maybe even not the simplest one). Moreover. 
the -neurons· used are artificial neurons which perform various tasks. 
as follows: There are (N+1) neurons which are delay elements. and \'l'\. 

pOintwise non-linear functions (which may be interpreted as delay­
less. intermediate neurons). There are ~N synaptic connections 
between those two layers of neurons. In addition. as in the Hopfield 
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model, we have at each iteration to specify (either deterministically 
or stochastically) which coordinate are we updating. To do that, we 
use an N dimensional ·control register· whose content is always a unit 
vector of {O, l}N (and the location of the '1' will denote the next 
coordiante to be changed). This vector may be varied from instant n 
to n + 1 either by shift (·sequential coordinate update·) or at 
random. 

Let Ai' UUN be the i-th output of the ·co1!,trol· register, xi' 
l~UN and V be the (N+1) I!eurons inputs and xi = xi (l-2Ai ) the 
corresponding outputs (where xi' xi8{+1,-1), Ai 8{0,1}, but V is a real 
number), _j' l~j~ be the input of the j-th inte;medi~te neuron 
(-1~_ ~1), ~j = -(1-_ )-L be its output, and 'ji = ui j IN be the 
synaptiC weight of thJ ij - th synapsis, where u~j) refers here to the 
i-th element of the j-th memory. 

The system's equations are: 

The 
V = + CD. 

we made 
As 

sphere) 

1 < i ~ N (4a) 

1 ~ j < m (4b) 

~ "" -(1 __ )-L 
j j 

(4c) 

(4d) 

1 -S = i"(l-sign(V - V» (4e) 

1 < i ~ N (4f) 

V ~V + SV (4g) 

system is initialized by xi = xi (0) (the probe vector), and 
A block diagram of this sytem appears in Fig. 2. Note that 

use of N + m + 1 neurons and O(Nm) connections. 
for the continuous time case (with memories on the unit 

we will get the equations: 
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m - LN 2 Xi + 2m VX i = "jil1 j. 1 ~ i ~ N (Sa) 

j=l 

N N 

N 2 " . i X .• 6 2 2 
-j = = x .• 

J 1 1 
1 ~ j ~ m (Sb) 

i=l i .. l 

_(L + 1) 

l1j = (1 + 6 - 2_ j) 'I" • 1 < j ~ m (Sc) 

~ - 2 V = l1j (Sd) 

j=l 

with similar interpretation (here there is no 'control' register as 
all components are updated continuously). 

s 

Legend 

@] Deloy Unit (Neuron) 
i _~o Synoptic Switch (0 =Zi, c =0) 

fc t c = I 

( { , c=O) Synoptic Switch 0= .. 
'2 C = I 

Computation UnIt (0= 1/2(1-sign(i2-i, Il) 

Figure 2 Neural Network Implementotion 
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