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LEARNING IN NETWORKS OF 
NONDETERMINISTIC ADAPTIVE LOGIC ELEMENTS 

Richard C. Windecker* 
AT&T Bell Laboratories, Middletown, NJ 07748 

ABSTRACT 

This paper presents a model of nondeterministic adaptive automata that are 
constructed from simpler nondeterministic adaptive information processing 
elements. The first half of the paper describes the model. The second half discusses 
some of its significant adaptive properties using computer simulation examples. 
Chief among these properties is that network aggregates of the model elements can 
adapt appropriately when a single reinforcement channel provides the same positive 
or negative reinforcement signal to all adaptive elements of the network at the same 
time. This holds for multiple-input, multiple-output, multiple-layered, 
combinational and sequential networks. It also holds when some network elements 
are "hidden" in that their outputs are not directly seen by the external 
environment. 

INTRODUCTION 

There are two primary motivations for studying models of adaptive automata 
constructed from simple parts. First, they let us learn things about real biological 
systems whose properties are difficult to study directly: We form a hypothesis 
about such systems, embody it in a model, and then see if the model has reasonable 
learning and behavioral properties. In the present work, the hypothesis being tested 
is: that much of an animal's behavior as determined by its nervous system is 
intrinsically nondeterministic; that learning consists of incremental changes in the 
probabilities governing the animal's behavior; and that this is a consequence of the 
animal's nervous system consisting of an aggregate of information processing 
elements some of which are individually nondeterministic and adaptive. The second 
motivation for studying models of this type is to find ways of building machines 
that can learn to do (artificially) intelligent and practical things. This approach has 
the potential of complementing the currently more developed approach of 
programming intelligence into machines. 

We do not assert that there is necessarily a one-to-one correspondence 
between real physiological neurons and the postulated model information processing 
elements. Thus, the model may be loosely termed a "neural network model," but is 
more accurately described as a model of adaptive automata constructed from simple 
adaptive parts. 

* The main ideas in this paper were conceived and initially developed while the 
author was at the University of Chiang Mai, Thailand (1972-73). The ideas were 
developed further and put in a form consistent with existing switching and 
automata theory during the next four years. For two of those years, the author 
was at the University of Guelph, Ontario, supported of National Research 
Council of Canada Grant #A6983. 
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It almost certainly has to be a property of any acceptable model of animal 
learning that a single reinforcement channel providing reinforcement to all the 
adaptive elements in a network (or subnetwork) can effectively cause that network 
to adapt appropriately. Otherwise, methods of providing separate, specific 
reinforcement to all adaptive elements in the network must be postulated. Clearly, 
the environment reinforces an animal as a whole and the same reinforcement 
mechanism can cause the animal to adapt to many types of situation. Thus, the 
reinforcement system is non-specific to particular adaptive elements and particular 
behaviors. The model presented here has this property. 

The model described here is a close cousin to the family of models recently 
described by Barto and coworkers 1-4. The most significant difference are: 1) In 
the present model, we define the timing discipline for networks of elements more 
explicitly and completely. This particular timing discipline makes the present 
model consistent with a nondeterministic extension of switching and automata 
theory previously described 0. 2) In the present model, the reinforcement algorithm 
that adjusts the weights is kept very simple. With this algorithm, positive and 
negative reinforcement have symmetric and opposite effects on the weights. This 
ensures that the logical signals are symmetric opposites of each other. (Even small 
differences in the reinforcement algorithm can make both subtle as well as profound 
differences in the behavior of the model.) We also allow, null, or zero, 
reinforcemen t. 

As in the family of models described by Barto, networks constructed within 
the present model can get "stuck" at a sUboptimal behavior during learning and 
therefore not arrive at the optimal adapted state. The complexity of the Barto 
reinforcement algorithm is designed partly to overcome this tendency. In the 
present work, we emphasize the use of training strategies when we wish to ensure 
that the network arrives at an optimal state. (In nature, it seems likely that getting 
"stuck" at suboptimal behavior is common.) In all networks studied so far, it has 
been easy to find strategies that prevent the network from getting stuck. 

The chief contributions of the present work are: 1) The establishment of a 
close connection between these types of models and ordinary, nonadaptive, 
switching and automata theory 0. This makes the wealth of knowledge in this area, 
especially network synthesis and analysis methods, readily applicable to the study 
of adaptive networks. 2) The experimental demonstration that sequential 
("recurrent") nondeterministic adaptive networks can adapt appropriately. Such 
networks can learn to produce outputs that depend on the recent sequence of past 
inputs, not just the current inputs. 3) The demonstration that the use of training 
strategies can not only prevent a network from getting stuck, but may also result in 
more rapid learning. Thus, such strategies may be able to compensate, or even 
more than compensate, for reduced complexity in the model itself. 

References 2-4 and 6 provide a comprehensive background and guide to the 
literature on both deterministic and nondeterministic adaptive automata including 
those constructed from simple parts and those not. 

THE MODEL ADAPTIVE ELEMENT 

The model adaptive element postulated in this work is a nondeterministic, 
adaptive generalization of threshold logic 7. Thus, we call these elements 
Nondeterministic Adaptive Threshold-logic gates (NATs). The output chosen by a 
NAT at any given time is not a function of its inputs. Rather, it is chosen by a 
stochastic process according to certain probabilities. It is these probabilities that 
are a function of the inputs. 

A NAT is like an ordinary logic gate in that it accepts logical inputs that are 
two-valued and produces a logical output that is two-valued. We let these values be 
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+ 1 and -1. A NAT also has a timing input channel and a reinforcement input 
channel. The NAT operates on a three-part cycle: 1) Logical input signals are 
changed and remain constant. 2) A timing signal is received and the NAT selects a 
new output based on the inputs at that moment. The new output remains 
constant. 3) A reinforcement signal is received and the weights are incremented 
according to certain rules. 

Let N be the number of logical input channels, let Xi represent the ith input 
signal, and let z be the output. The NAT has within it N+ 1 "weights," 
wo, WI! ... , WN. The weights are confined to integer values. For a given set of 
inputs, the gate calculates the quantity W: 

Then the probability that output z = + 1 is chosen is: 

P(z = +1) -
w _--=-=- W/v2q 

1 J e 2q2 dx = _1_ J e-(l d~ 
.j2; u - 00 ..;; - 00 

(2) 

where ~ = xjV2u. (An equivalent formulation is to let the NAT generate a 
random number, Wq, according to the normal distribution with mean zero and 
variance u2 . Then if W > - Wq, the gate selects the output z = + 1. If 
W < - Wq, the gate selects output z = -1. If W = - Wq, the gate selects output 
-1 or + 1 with equal probability.) 

Reinforcement signals, R, may have one of three values: + 1, -1, and 0 
representing positive, negative, and no reinforcement, respectively. If + 1 
reinforcement is received, each weight is incremented by one in the direction that 
makes the current output, z, more likely to occur in the future when the same 
inputs are applied; if -1 reinforcement is received, each weight is incremented in 
the direction that makes the current output less likely; if 0 reinforcement is 
received, the weights are not changed. These rules may be summarized: ~wo = zR 
and ~Wj = xjzR for i > o. 

NATs operate in discrete time because if the NAT can choose output + 1 or 
-1, depending on a stochastic process, it has to be told when to select a new 
output. It cannot "run freely," or it could be constantly changing output. Nor can 
it change output only when its inputs change because it may need to select a new 
output even when they do not change. 

The normal distribution is used for heuristic reasons. If a real neuron (or an 
aggregate of neurons) uses a stochastic process to produce nondeterministic 
behavior, it is likely that process can be described by the normal distribution. In 
any case, the exact relationship between P{z = + 1) and W is not critical. What is 
important is that P(z = + 1) be monotonically increasing in W, go to 0 and 1 
asymptotically as W goes to - 00 and + 00, respectively, and equal 0.5 at W = O. 

The parameter u is adjustable. We use 10 in the computer simulation 
experiments described below. Experimentally, values near 10 work reasonably well 
for networks of NATs having few inputs. Note that as u goes to zero, the behavior 
of a NAT approximates that of an ordinary deterministic ada pt,ive threshold logic 
gate with the difference that the output for the case W = 0 is not arbitrary: The 
NAT will select output +1 or -1 with equal probability. 

Note that for all values of W, the probabilit,ies are greater than zero that 
either + 1 or -1 will be chosen, although for large values of W (relative to u) for all 
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practical purposes, the behavior is deterministic. There are many values of the 
weights that cause the NAT to approximate the behavior of a deterministic 
threshold logic gate. ~or the same reasons that deterministic threshold logic gates 
cannot realize all 22 functions of N variables 7, so a NAT cannot learn to 
approximate any deterministic function; only the threshold logic functions. 

Note also that when the weights are near zero, a NAT adapts most rapidly 
when both positive and negative reinforcement are used in approximately equal 
amounts. As the NAT becomes more likely to produce the appropriate behavior, 
the opportunity to use negative reinforcement decreases while the opportunity to 
use positive reinforcement increases. This means that a NAT cannot learn to 
(nearly) always select a certain output if negative reinforcement alone is used. 
Thus, positive reinforcement has an important role in this model. (In most 
deterministic models, positive reinforcement is not useful.) 

Note further that there is no hysteresis in NAT learning. For a given 
configuration of inputs, a + 1 output followed by a + 1 reinforcement has exactly the 
same effect on all the weights as a -1 output followed by a -1 reinforcement. So 
the order of such events has no effect on the final values of the weights. 

Finally, if only negative reinforcement is applied to a NAT, independent of 
output, for a particular combination of inputs, the weights will change in the 
direction that makes W tend toward zero and once there, follow a random walk 
centered on zero. (The further W is from zero, the more likely its next step will be 
toward zero.) If all possible input combinations are applied with more or less equal 
probability, all the weights will tend toward zero and then follow random walks 
centered on zero. In this case, the NAT will select + 1 or -1 with more or less 
equal probability without regard to its inputs. 

NETWORKS 

NATs may be connected together in networks (NAT-nets). The inputs to a 
NAT in such a network can be selected from among: 1) the set of inputs to the 
entire network, 2) the set of outputs from other NATs in the network, and 3) its 
own output. The outputs of the network may be chosen from among: 1) the inputs 
to the network as a whole, and 2) the outputs of the various NATs in the network . 

Following Ref. 5, we impose a timing discipline on a NAT-net. The network is 
organized into layers such that each NAT belongs to one layer. Letting L be the 
number of layers, the network operates as follows: 1) All NATs in a given layer 
receive timing signals at the same time and select a new output at the same time. 
2) Timing signals are received by the different layers, in sequence, from 1 to L. 3) 
Inputs to the network as a whole are levels that may change only before Layer 1 
receives its timing signal. Similarly, outputs from the network as a whole are 
available to the environment only after Layer L has received its timing signal. 
Reinforcement to the network as a whole is accepted only after outputs are made 
available to the environment. The same reinforcement signal is distributed to all 
NATs in the network at the same time. 

With these rules, NAT-nets operate through a sequence of timing cycles. In 
each cycle: 1) Network inputs are changed. 2) Layers 1 through L select new 
outputs, in sequence. 3) Network outputs are made available to the environment. 
4) Reinforcement is received from the environment. We call each such cycle a 
"trial" and a sequence of such trials is a "session." 

This model is very general. If, for each gate, inputs are selected only from 
among the inputs to the network as a whole and from the outputs of gates in layers 
preceding it in the timing cycle, then the network is combinational. In this case, the 
probability of the network producing a given output configuration is a function of 
the inputs at the start of the timing cycle. If at least one NAT has one input from a 
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NAT in the same layer or from a subsequent layer in the timing cycle, then the 
network is sequential. In this case, the network may have "internal states" that 
allow it to remember information from one cycle to the next. Thus, the 
probabilities governing its choice of outputs may depend on inputs in previous 
cycles. So sequential NAT-nets may have short-term memory embodied in internal 
states and long-term memory embodied in the weights. In Ref. 5, we showed that 
sequential networks can be constructed by adding feedback paths to combinational 
networks and any sequential network can be put in this standard form. 

In information-theoretic terms: 1) A NAT-net with no inputs and some 
outputs is an "information source." 2) A NAT-net with both inputs and outputs is 
an information "channel." 3) A combinational NAT-net is "memory-less" while a 
sequential NAT-net has memory. In this context, note that a NAT-net may operate 
in an environment that is either deterministic or nondeterministic. Both the logical 
and the reinforcement inputs can be selected by stochastic processes. Note also 
that nondeterministic and deterministic elements as well as adaptive and 
nonadaptive elements can be combined in one network. (It may be that the 
decision-making parts of an animal's nervous system are nondeterministic and 
adaptive while the information transmitting parts (sensory data-gathering and the 
motor output parts) are deterministic and nonadaptive.) 

One capability that combinational NAT-nets possess is that of "pattern 
recognizers." A network having many inputs and one or a few outputs can 
"recognize" a small subset of the potential input patterns by producing a particular 
output pattern with high probability when a member of the recognized subset 
appears and a different output pattern otherwise. In practice, the number of 
possible input patterns may be so large that we cannot present them all for training 
purposes and must be content to train the network to recognize one subset by 
distinguishing it (with different output pattern) from another subset. In this case, 
if a pattern is subsequently presented to the network that has not been in one of 
the training sets, the probabilities governing its output may approach one or zero, 
but may well be closer to 0.5. The exact values will depend on the details of the 
training period. If the new pattern is similar to those in one of the training sets, the 
NAT-net will often have a high probability of producing the same output as for that 
set. This associative property is the analog of the well known associative property 
in deterministic models. If the network lacks sufficient complexity for the 
separation we wish to make, then it cannot be trained. For example, a single N­
input NAT cannot be trained to recognize any arbitrary set of input patterns by 
selecting the + 1 output when one of them is presented and -1 otherwise. It can 
only be trained to make separations that correspond to threshold functions. 

A combinational NAT-net can also produce patterns. By analogy with a 
pattern recognizer, a NAT-net with none or a few inputs and a larger number of 
outputs can learn for each input pattern to produce a particular subset of the 
possible output patterns. Since the mapping may be few-to-many, instead of 
many-to-few, the goal of training in this case mayor may not be to have the 
network approximate deterministic behavior. Clearly, the distinction between 
pattern recognizers and pattern prod ucers is somewhat arbitrary: in general, NAT­
nets are pattern transducers that map subsets of input patterns into subsets of 
output patterns. A sequential network can "recognize" patterns in the time­
sequence of network inputs and produce patterns in the time-sequence of outputs. 

SIMULATION EXPERIMENTS 

In this Section, we discuss computer simulation results for three types of 
multiple-element networks. For two of these types, certain strategies are used to 
train the networks. In general, these strategies have two parts that alternate, as 



845 

needed. The first part is a general scheme for providing network inputs and 
reinforcement that tends to train all elements in the network in the desired 
direction. The second part is substituted temporarily when it becomes apparent 
that the network is getting stuck in some suboptimal behavior. It is focussed on 
getting the network unstuck. The strategies used here are intuitive. In general, 
there appear to be many strategies that will lead the network to the desired 
behavior. While we have made some attempt to find strategies that are reasonably 
efficient, it is very unlikely that the ones used are optimal. Finally, these strategies 
have been tested in hundreds of training sessions. Although they worked in all such 
sessions, there may be some (depending on the sequence of random numbers 
generated) in which they would not work . 

In describing the networks simulated, Figs. 1-3, we use the diagramatic 
conventions defined in Ref. 5: We put all NATs in the same layer in a vertical line, 
with the various layers arranged from left to right in their order in the timing cycle. 
Inputs to the entire network corne in from the left; outputs go out to the right. 
Because the timing cycle is fixed, we omit the timing inputs in these figures. For 
similar reasons, we also omit the reinforcement inputs. 

In the simulations described here, the weights in the NATs start at zero 
making the network outputs completely random in the sense that on any given 
trial, all outputs are equally likely to occur, independent of past or present inputs. 
As learning proceeds, some or all the weights become large, so that the NAT-net's 
selection of outputs is strongly influenced by some or all of its inputs and internal 
connections. (Note that if the weights do not start at zero, they can be driven close 
to zero by using negative reinforcement.) In general, the optimum behavior toward 
which the network adapts is deterministic. However, because the probabilities are 
never identically equal to zero or one, we apply an arbitrary criterion and say that a 
NAT-net has learned the appropriate behavior when that criterion is satisfied. In 
real biological systems, we cannot know the weights or the exact probabilities 
governing the behavior of the individual adaptive elements. Therefore, it is 
appropriate to use a criterion based on observable behavior. For example, the 
criterion might be that the network selects the correct response (and continues to 
receive appropriate reinforcement) 25 times in a row. 

Note that NAT-nets can adapt appropriately when the environment is not 
deliberately trying to make the them behave in a particular way. For example, the 
environment may provide inputs according to some (not necessarily deterministic) 
pattern and there may be some independent mechanism that determines whether 
the NAT-net is responding appropriately or not and provides the reinforcement 
accordingly. One paradigm for this situation is a game in which the NAT-net and 
the environment are players. The reinforcement scheme is simple: if, according to 
the rules of the game, the NAT-net wins a play (= trial) of the game, reinforcement 
is + 1 , if it loses, -1. 

For a NAT-net to adapt appropriately in this situation, the game must consist 
of a series of similar plays. If the game is competitive, the best strategy a given 
player has depends on how much information he has about the opponent and vice 
versa. If a player assumes that his opponent is all-knowing, then his best strategy is 
to minimize his maximum loss and this often means playing at random, or a least 
according to certain probabilities. If a player knows a lot about how his opponent 
plays, his best strategy may be to maximize gain. This often means playing 
according to some deterministic strategy. 

The example networks described here are special cases of three types: pattern 
producing (combinational multiple-output) networks, pattern recogmzmg 
(combinational multiple-input, multiple-layered, few-output) networks, and game 
playing (sequential) networks. The associative properties of NATs and NAT-nets 
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are not emphasized here because they are analogous to the well known associative 
properties of other related models. 

A Class of Simple Pattern Producing Networks 

A simple class of pattern producing 
networks consists of the single-layer type 
shown in Fig. 1. Each of M NATs in such a 
network has no inputs, only an output. As a 
consequence, each has only one weight, Woo 
The network is a simple, adaptive, information 
source. 

Consider first the case in which the 
network contains only one NAT and we wish to 
train it to always produce a simple "pattern," 
+ 1. We give positive reinforcement when it 
selects + 1 and negative reinforcement 
otherwise. If Wo starts at 0, it will quickly 
gr.ow large making the probability of selecting 
+ 1 approach unity. The criterion we use for 
deciding that the network is trained is that it 
produce a string of 25 correct outputs. Table I 

o~-..... z, 

0--.' Z2 

O~-..... ~3 
· · · · · · 

· • • • • • · 0--.. Z18 

Fig. 1. A Simple Pattern 
Producing Network 

shows that in 100 sessions, this one-NAT network selected + 1 output for the next 
25 trials starting, on average, at trial 13. 

Next consider a network with two NATs. They can produce four different 
output patterns. If both weights are 0, they will produce each of the patterns with 
equal probability. But they can be trained to produce one pattern (nearly) all the 
time. If we wish to train this subnetwork to produce the pattern (in vector 
notation) [+1 +1], one strategy is to give no 

M 
1 
2 
4 
8 

16 

Min 
1 
8 

18 
44 
49 

Ave 
13 
25 
35 
70 

115 

Max 
26 
43 
60 

109 
215 

reinforcement if it produces patterns [-1 +1] or 
[+1 -1), give it positive reinforcement if it 
produces [+1 +1] and negative reinforcement if 
it produces [-1 -1]. Table I shows that in 100 
sessions, this network learned to produce the 
desired pattern (by producing a string of 25 
correct outputs) in about 25 trials. Because we 
initially gave reinforcement only about 50% of 
the time, it took longer to train two NATS Table I. Training Times For 
than one. Networks Per Fig. 1. 

Next, consider the 16-NAT network in 
Fig. 1. Now there are 216 possible patterns the network can produce. When all the 
weights are zero, each has probability 2- 16 of being produced. An ineffective 
strategy for training this network is to provide positive reinforcement when the 
desired pattern is produced, negative reinforcement when its opposite is produced, 
and zero reinforcement otherwise. A better strategy is to focus on one output of the 
network at a time, training each NAT separately (as above) to have a high 
probability of producing the desired output. Once all are trained to a relatively 
high level, the network as a whole has a reasonable chance of producing exactly the 
correct output. Now we can provide positive reinforcement when it does and no 
reinforcement otherwise. With this two-stage hybrid strategy, the network will 
soon meet the training criterion. The time it takes to train a network of M 
elements with a strategy of this type is roughly proportional to M, not 2(M - 1), as 
for the first strategy. 
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A still more efficient strategy is to alternate between a general substrategy 
and a substrategy focussed on keeping the network from getting "stuck ." One 
effective general substrategy is to give positive reinforcement when more than half 
of the NATs select the desired output, negative reinforcement when less than half 
select the desired output, and no reinforcement when exactly half select the desired 
output. This substrategy starts out with approximately equal amounts of positive 
and negative reinforcement being applied. Soon, the network selects more than half 
of the outputs correctly more and more of the time. Unfortunately, there will tend 
to be a minority subset with low probability of selecting the correct output. At this 
stage, we must recognize this subset and switch to a substrategy that focuses on the 
elements of this subset following the strategy for one or two elements, above. When 
all NATs have a sufficiently high probability of selecting the desired output, 
training can conclude with the first substrategy. 

The strategies used to obtain the results for M = 4,8, and 16 in Table I were 
slightly more complicated variants of this two-part strategy. In all of them, a 
running average was kept of the number of right responses given by each NAT. 
Letting OJ be the "correct" output for Zj, the running average after the tt" trial, 
Aj( t), is: 

Aj(t) = BAj(t - 1) + CjZj(t) (3) 

where B is a fraction generally in the range 0.75 to 0.9. If Aj(t) for a particular i 
gets too far below the combined average for all i, then training focuses on the it" 
element until its average improves. The significance of the results given in Table I 
is not the details of the strategies used, nor how close the training times may be to 
the optimum. Rather, it is the demonstration that training strategies exist such 
that the training time grows significantly more slowly than in proportion to M. 

A Simple Pattern Recognizing Network 

As mentioned above, there are fewer 
threshold logic functions of N variables (for 
N > 1) than the total possible functions. 
For N = 2, there are 14. The remining two 
are the "exclusive or" (XOR) and its 
complement. Multi-layered networks are 

x, -~))~---......p)oo--•. Z 

X2 _-0lil_1:;,.-__ __ 

needed to realize these functions, and an Fig. 2. A Two-Element Network 
important test of any adaptive network That Learns XOR 
model is its ability to learn XOR. The 
network in Fig. 2 is one of the simplest networks capable of learning this function. 
Table II gives the results of 100 training sessions with this network. The strategy 
used to obtain these 
results again had two 
parts. The general part 
consisted of supplying 
each of the four possible 
input patterns to the 
network in rotation, 
glvmg appropriate 

Network Function Min Ave 
Fig. 2 
Fig. 2 
Ref. 2 
Ref. 8 

OR 18 57 
XOR 218 681 
XOR -700 -3500 
XOR 2232 -

Table II. Training Times For The 
Network In Fig. 2. 

Max 
106 

1992 
-14,300 

-

reinforcement each trial. 
The second part involved 
keeping a running average (similar to Eq. (3)) of the responses of the network by 
input combination. When the average for one combination fell significantly behind 
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the average for all, training was focused on just that combination until performance 
improved. The criterion used for deciding when training was complete was a 
sequence of 50 correct responses (for all input patterns together). 

For comparison, Table II shows results for the same network trained to realize 
the normal OR function. Also shown for comparison are numbers taken from Refs. 
2 and 8 for the equivalent network in those different models. These are 
nondeterministic and deterministic models, respectively. The numbers from Ref. 2 
are not exactly comparable with the present results for several reasons. These 
include: 1) The criterion for judging when the task was learned was not the same; 
2) In Ref. 2, the "wrong" reinforcement was deliberately applied 10% of the time to 
test learning in this situation; 3) Neither model was optimized for the particular 
task at hand. Nonetheless, if these (and other) differences were taken into account, 
it is likely that the NAT-net would have learned the XOR function significantly 
faster. 

The significance of the present results is that they suggest that the use of a 
training strategy can not only prevent a network from getting stuck, but may also 
facilitate more rapid learning. Thus, such strategies can compensate, or more than 
compensate, for reduced complexity in the reinforcement algorithm. 

A Simple Game-Playing Network 

Here, we consider NAT-nets in the context of the game of "matching 
pennies." In this game, each player has a stack of pennies. At each play of the 
game, each player places one of his pennies, heads up or heads down, but covered, in 
front of him. Each player uncovers his penny at the same time. If they match, 
player A adds both to his stack, otherwise, player B takes both. 

Game theory says that the strategy of each player that minimizes his 
maximum loss is to play heads and tails at random. Then A cannot predict B's 
behavior and at best can win 50% of the time and likewise for B with respect to A. 
This is a conservative strategy on the part of each player because each assumes that 
the other has (or can derive through a sequence of plays), and can use, information 
about the other player's strategy. Here, we make the different assumption that: 1) 
Player B does not play at random, 2) Player B has no information about A's 
strategy, and 3) Player B is incapable of inferring any information about A through 
a sequence of plays and in any event is incapable of changing its strategy. Then, if 
A has no information about B's pattern of playing at the start of the game, A's best 
course of action is to try to infer a non-random pattern in B's playing through a 
sequence of plays and subsequently take advantage of that knowledge to win more 
often than 50% of the time. An adaptive NAT-net, as A, can adapt appropriately 
in situations of this type. For example, suppose a single NAT of the type in Fig. 1 
plays A, where + 1 output means heads, -1 output means tails. A third agent 
supplies reinforcement + 1 if the NAT wins a play, -1 otherwise. Suppose B plays 
heads with 0.55 probability and tails with 0.45 probability. Then A will learn over 
time to play heads 100% of the time and thereby maximize its total winnings by 
winning 55% of the time. 

A more complicated situation is the following. Suppose B repeats its own 
move two plays ago 80% of the time, and plays the opposite 20% of the time. A 
NAT-net with the potential to adapt to this strategy and win 80% of the time is 
shown in Fig. 3. This is a sequential network shown in the standard form of a 
combinational network (in the dotted rectangle) plus a feedback path. The input to 
the network at time tis B's play at t - 1. The output is A's move. The top NAT 
selects its output at time t based partly on the bottom NAT's output at time 
t - 1. The bottom NAT selects its output at t - 1 based on its input at that time 
which is B's output at t - 2. Thus, the network as a whole can learn to select its 
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output based on B's play two time increments past. Simulation of 100 sessions 
resulted in the network learning to do this 
98 times. On average, it took 468 plays 
(Min 20, max 4137) to reach the point at 
which the network repeated B's move two 
times past on the next 50 plays. For two 
sessions the network got stuck (for an 
unknown number of plays greater than 
25,000) playing the opposite of B's last 
move or always playing tails. {The first 
two-part strategy found that trains the 
network to repeat B's output two time 
increments past without getting stuck (not 
in the game-playing context) took an 
average of 260 trials (Min 25, Max 1943) to 
meet the training criterion.) 

x----~ Hi----.... Z 

Fig. 3. A Sequential Game­
Playing Network 

The significance of these results is that a sequential NAT-net can learn to 
produce appropriate behavior. Note that hidden NATs contributed to appropriate 
behavior for both this network and the one that learned XOR, above. 

CONCLUDING REMARKS 

The examples above have been kept simple in order to make them readily 
understandable. They are not exhaustive in the sense of covering all possible types 
of situations in which NAT-nets can adapt appropriately. Nor are they definitive in 
the sense of proving generally and in what situations NAT-nets can adapt 
appropriately. Rather, they are illustrative in the sense of demonstrating a variety 
of significant adaptive abilities. They provide an existence proof that NAT-nets can 
adapt appropriately and relatively easily in a wide variety of situations. 

The fact that nondeterministic models can learn when the same reinforcement 
is applied to all adaptive elements, while deterministic models generally cannot, 
supports the hypothesis that animal nervous systems may be (partly) 
nondeterministic. Experimental characterization of how animal learning does, or 
does not get "stuck," as a function of learning environment or training strategy, 
would be a useful test of the ideas presented here. 
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