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ABSTRACT 

The capacity of an associative memory is defined as the maximum 
number of vords that can be stored and retrieved reliably by an address 
vithin a given sphere of attraction. It is shown by sphere packing 
arguments that as the address length increases. the capacity of any 
associati ve memory is limited to an exponential grovth rate of 1 - h2( 0). 
vhere h2(0) is the binary entropy function in bits. and 0 is the radius 
of the sphere of attraction. This exponential grovth in capacity can 
actually be achieved by the Kanerva associative memory. if its 
parameters are optimally set . Formulas for these op.timal values are 
provided. The exponential grovth in capacity for the Kanerva 
associative memory contrasts sharply vith the sub-linear grovth in 
capacity for the Hopfield associative memory. 

ASSOCIATIVE MEMORY AND ITS CAPACITY 

Our model of an associative memory is the folloving. Let ()(,Y) be 
an (address. datum) pair. vhere )( is a vector of n ±ls and Y is a 
vector of m ±ls. and let ()(l),y(I)), ... ,()(M) , y(M)). be M (address, 
datum) pairs stored in an associative memory. If the associative memory 
is presented at the input vith an address )( that is close to some 
stored address )(W. then it should produce at the output a vord Y that 
is close to the corresponding contents y(j). To be specific, let us say 
that an associative memory can correct fraction 0 errors if an )( vi thin 
Hamming distance no of )((j) retrieves Y equal to y(j). The Hamming 
sphere around each )(W vill be called the sphere of attraction, and 0 
viII be called the radius of attraction. 

One notion of the capacity of this associative memory is the 
maximum number of vords that it can store vhile correcting fraction 0 
errors . Unfortunately. this notion of capacity is ill-defined. because 
it depends on exactly vhich (address. datum) pairs have been stored. 
Clearly. no associative memory can correct fraction 0 errors for every 
sequence of stored (address, datum) pairs. Consider. for example, a 
sequence in vhich several different vords are vritten to the same 
address . No memory can reliably retrieve the contents of the 
overvritten vords. At the other extreme. any associative memory ' can 
store an unlimited number of vords and retrieve them all reliably. if 
their contents are identical. 

A useful definition of capacity must lie somevhere betveen these 
tvo extremes. In this paper. ve are interested in the largest M such 
that for most sequences of addresses XU), .. . , X(M) and most sequences of 
data y(l), ... , y(M). the memory can correct fraction 0 errors. We define 
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I most sequences' in a probabilistic sense, as some set of sequences yi th 
total probability greater than say, .99. When all sequences are 
equiprobab1e, this reduces to the deterministic version: 991. of all 
sequences. 

In practice it is too difficult to compute the capacity of a given 
associative memory yith inputs of length n and outputs of length Tn. 

Fortunately, though, it is easier to compute the asymptotic rate at 
which A1 increases, as n and Tn increase, for a given family of 
associative memories. This is the approach taken by McEliece et al. [1] 
toyards the capacity of the Hopfield associative memory. We take the 
same approach tovards the capacity of the Kanerva associative memory, 
and tovards the capacities of associative memories in general . In the 
next section ve provide an upper bound on the rate of grovth of the 
capacity of any associative memory fitting our general model. It is 
shown by sphere packing arguments that capacity is limited to an 
exponential rate of grovth of 1- h2(t5), vhere h2(t5) is the binary entropy 
function in bits, and 8 is the radius of attraction. In a later section 
it vill turn out that this exponential grovth in capacity can actually 
be achieved by the Kanerva associative memory, if its parameters are 
optimally set. This exponential grovth in capacity for the Kanerva 
associative memory contrasts sharply yith the sub-linear grovth in 
capacity for the Hopfield associative memory [1]. 

A UNIVERSAL UPPER BOUND ON CAPACITY 

Recall that our definition of the capacity of an associative memory 
is the largest A1 such that for most sequences of addresses 
X(1), ... ,X(M) and most sequences of data y(l), ... , y(M), the memory can 
correct fraction 8 errors. Clearly, an upper bound to this capacity is 
the largest Af for vhich there exists some sequence of addresses 
X(1), . . . , X(M) such that for most sequences of data y(l), ... , y(M), the 
memory can correct fraction 8 errors. We nov derive an expression for 
this upper bound. 

Let 8 be the radius of attraction and let DH(X(i) , d) be the sphere 
of attraction, i.e., the set of all Xs at most Hamming distance d= Ln8J 
from .y(j). Since by assumption the memory corrects fraction 8 errors, 
every address X E DH(XU),d) retrieves the vord yW. The size of 
DH(XU),d) is easily shown to be independent of xU) and equal to 

vn.d = 2:%=0 (1:), vhere (I:) is the binomial coefficient n!jk!(n - k)!. Thus 
out of a total of 2n n-bit addresses, at least vn.d addresses retrieve 
y(l), at least Vn.d addresses retrieve y(2), at least Vn.d addresses 
retrieve y(~, and so forth. It fol10vs that the total number of 
distinct yU)s can be at most 2n jvn .d ' Nov, from Stirling's formula it 
can be shovn that if d:S; nj2, then vn.d = 2nh2 (d/n)+O(logn), vhere 
h2( 8) = -81og2 8 - (1 - 8) log2( 1 - 8) is the binary entropy function in bits, 
and O(logn) is some function yhose magnitude grovs more slovly than a 
constant times log n. Thus the total number of distinct y(j)s can be at 
most 2n(1-h2(S»+O(logn) Since any set containing I most sequences' of Af 
Tn-bit vords vill contain a large number of distinct vords (if Tn is 
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Figure 1: Neural net representation of the Kanerva associative memory. Signals propa­
gate from the bottom (input) to the top (output). Each arc multiplies the signal by its 
weight; each node adds the incoming signals and then thresholds. 

sufficiently large --- see [2] for details), it follovs that 

M :5 2n(l-h 2 (o»+O(logn). (1) 

In general a function fen) is said to be O(g(n)) if f(n)fg(n) is 
bounded, i.e. , if there exists a constant a such that If(n)1 :5 a\g(n)1 for 
all n. Thus (1) says that there exists a constant a such that 
M :5 2n(l-h2 (S»+alogn. It should be emphasized that since a is unknow, 
this bound has no meaning for fixed n. Hovever, it indicates that 
asymptotically in n, the maximum exponential rate of grovth of M is 
1 - h2( 6). 

Intui ti vely, only a sequence of addresses X(l), ... , X(M) that 
optimally pack the address space {-l,+l}n can hope to achieve this 
upper bound. Remarkably, most such sequences are optimal in this sense, 
vhen n is large. The Kanerva associative memory can take advantage of 
this fact. 

THE KANERVA ASSOCIATIVE MEMORY 

The Kanerva associative memory [3,4] can be regarded as a tvo-layer 
neural netvork, as shovn in Figure 1, vhere the first layer is a 
preprocessor and the second layer is the usual Hopfield style array. 
The preprocessor essentially encodes each n-bit input address into a 
very large k-bit internal representation, k ~ n, vhose size will be 
permitted to grov exponentially in n. It does not seem surprising, 
then, that the capacity of the Kanerva associative memory can grov 
exponentially in n, for it is knovn that the capacity of the Hopfield 
array grovs almost linearly in k, assuming the coordinates of the 
k-vector are dravn at random by independent flips of a fair coin [1]. 
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Figure 2: Matrix representation of the Kanerva associative memory. Signals propagate 
from the right (input) to the left (output). Dimensions are shown in the box corners. 
Circles stand for functional composition; dots stand for matrix multiplication. 

In this situation, hovever, such an assumption is ridiculous: Since the 
k-bit internal representation is a function of the n-bit input address, 
it can contain at most n bits of information, whereas independent flips 
of a fair coin contain k bits of information. Kanerva's primary 
contribution is therefore the specification of the preprocessor, that 
is, the specification of how to map each n-bit input address into a very 
large k-bit internal representation. 

The operation of the preprocessor is easily described. Consider 
the matrix representation shovn in Figure 2. The matrix Z is randomly 
populated vith ±ls. This randomness assumption is required to ease the 
analysis. The function fr is 1 in the ith coordinate if the ith row of 
Z is within Hamming distance r of X, and is Oothervise. This is 
accomplished by thresholding the ith input against n-2r. The 
parameters rand k are two essential parameters in the Kanerva 
associative memory. If rand k are set correctly, then the number of 1s 
in the representation fr(ZX) vill be very small in comparison to the 
number of Os. Hence fr(Z~Y) can be considered to be a sparse internal 
representation of X. 

The second stage of the memory operates in the usual way, except on 
the internal representation of X. That is, Y = g(W fr(ZX)), vhere 

M 
l-V = LyU)[Jr(ZXU))]t, (2) 

i=l 

and 9 is the threshold function whose ith coordinate is +1 if the ith 
input is greater than 0 and -1 is the ith input is less than O. The ith 
column of l-V can be regarded as a memory location vhose address is the 
ith row of Z. Every X vi thin Hamming distance r of the ith rov of Z 
accesses this location. Hence r is known as the access radius, and k is 
the number of memory locations. 

The approach taken in this paper is to fix the linear rate p at 
which r grovs vith n, and to fix the exponential rate ~ at which k grovs 
with n. It turns out that the capacity then grovs at a fixed 
exponential rate Cp,~(t5), depending on p, ~, and 15. These exponential 
rates are sufficient to overcome the standard loose but simple 
polynomial bounds on the errors due to combinatorial approximations. 
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THE CAPACITY OF THE KANERVA ASSOCIATIVE MEMORY 

Fix 0 $ K $1. 0 $ p$ 1/2. and 0 $ 0 $ min{2p,1/2}. Let n be the 
input address length, and let Tn be the output word length. It is 
assumed that Tn is at most polynomial in n, i.e., Tn = exp{O(logn)}. Let 
r = IJmJ be the access radius, let k = 2L"nJ be the number of memory 
locations, and let d= LonJ be the radius of attraction. Let Afn be the 
number of stored words. The components of the n-vectors X(l), .. . , X(Mn) , 

the m-vectors y(l), ... , y(,Yn), and the k X n matrix Z are assumed to be 
lID equiprobable ±1 random variables. Finally, given an n-vector X, 
let Y = g(W fr(ZX)) where W = Ef;nl yU)[Jr(ZXW)jf. 

Define the quantity 

Cp ,,(0) = { 26 + 2(1- 0)h(P;~~2) + K, - 2h(p) if K, $ K,o(p) (3) 
'Cp,ICo(p)(o) if K> K,O(p) , 

where 
KO(p) = 2h(p) - 2; - 2(1- ;)h(P~242) + 1- he;) (4) 

and 
; = ~ - J 196 - 2p(1 - p). 

Theorem: If 
Af < 2nCp ... (5)+O(logn) n_ 

then for all f>O, all sufficiently large n, all jE{l, ... ,Afn }. and all 
X E DH(X(j) , d), 

P{y -::J y(j)} < f. 

Proof: See [2]. 
Interpretation: If the exponential growth rate of the number of 

stored words Afn is asymptotically less than Cp,,, ( 0), then for every 
sufficiently large address length n. there is some realization of the 
nx 2n" preprocessor matrix Z such that the associative memory can 
correct fraction 0 errors for most sequences of Afn (address, datum) 
pairs. Thus Cp,IC( 0) is a lover bound on the exponential growth rate of 
the capacity of the Kanerva associative memory with access radius np and 
number of memory locations 2nIC • 

Figure 3 shows Cp,IC(O) as a function of the radius of attraction 0, 
for K,= K,o(p) and p=O.l, 0.2, 0.3, 0.4 and 0.45. For· any fixed access 
radius p, Cp,ICO(p) ( 0) decreases as 0 increases. This reflects the fact 
that fewer (address, datum) pairs can be stored if a greater fraction of 
errors must be corrected. As p increases, Cp,,,o(p)(o) begins at a lower 
point but falls off less steeply. In a moment we shall see that p can 
be adjusted to provide the optimal performance for a given O. 

Not ShOVIl in Figure 3 is the behavior of Cp,,, ( 0) as a function of K,. 
However, the behavior is simple. For K, > K,o(p), Cp,,,(o) remains 
unchanged, while for K$ K,o(p), Cp,,,(o) is simply shifted doVIl by the 
difference KO(p)-K,. This establishes the conditions under which the 
Kanerva associative memory is robust against random component failures. 
Although increasing the number of memory locations beyond 2rl11:o(p) does 
not increase the capacity, it does increase robustness. Random 
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Figure 3: Graphs of Cp,lCo(p)(o) as defined by (3). The upper envelope is 1- h2(0). 

component failures will not affect the capacity until so many components 
have failed that the number of surviving memory locations is less than 
2nlCo (p) . 

Perhaps the most important curve exhibited in Figure 3 is the 
sphere packing upper bound 1 - h2 ( 0). which is achieved for a particular 

p by b = ~ - J 196 - 2p(1 - p). Equivalently. the upper bound is achieved 
for a particular 0 by P equal to 

poCo) = t - Jt - iO(l - ~o). 
Thus (4) and (5) specify the optimal values of the parameters K and P. 
respectively. These functions are shown in Figure 4. With these 
optimal values. (3) simplifies to 

the sphere packing bound. 

(5) 

It can also be seen that for 0 = 0 in (3). the exponential growth 
rate of the capacity is asymptotically equal to K. which is the 
exponential growth rate of the number of memory locations. k n • That is. 
Mn = 2n1C+O(logn) = kn . 20 (logn). Kanerva [3] and Keeler [5] have argued 
that the capacity at 8 =0 is proportional to the number of memory 
locations, i.e .• Mn = k n . (3. for some constant (3. Thus our results are 
consistent with those of Kanerva and Keeler. provided the 'polynomial' 
20 (logn) can be proved to be a constant. However. the usual statement of 
their result. M = k·(3. that the capacity is simply proportional to the 
number of memory locations. is false. since in light of the universal 
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Figure 4: Graphs of KO(p) and co(p), the inverse of Po(<5), as defined by (4) and (5). 

upper bound, it is impossible for the capacity to grow without bound, 
with no dependence on the dimension n. In our formulation, this 
difficulty does not arise because we have explicitly related the number 
of memory locations to the input dimension: kn =2n~. In fact, our 
formulation provides explicit, coherent relationships between all of the 
following variables: the capacity .~, the number of memory locations k, 
the input and output dimensions n and Tn, the radius of attraction C, 
and the access radius p. We are therefore able to generalize the 
results of [3,5] to the case C >0, and provide explicit expressions for 
the asymptotically optimal values of p and K as well. 

CONCLUSION 

We described a fairly general model of associative memory and 
selected a useful definition of its capacity. A universal upper bound 
on the growth of the capacity of such an associative memory was shown by 
a sphere packing argument to be exponential with rate 1 - h2( c), where 
h2(C) is the binary entropy function and 8 is the radius of attraction. 
We reviewed the operation of the Kanerva associative memory, and stated 
a lower bound on the exponential growth rate of its capacity. This 
lower bound meets the universal upper bound for optimal values of the 
memory parameters p and K. We provided explicit formulas for these 
optimal values. Previous results for <5 =0 stating that the capacity of 
the Kanerva associative memory is proportional to the number of memory 
locations cannot be strictly true. Our formulation corrects the problem 
and generalizes those results to the case C > o. 
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