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ABSTRACT 

Transient phenomena associated with forward biased silicon p + - n - n + struc­
tures at 4.2K show remarkable similarities with biological neurons. The devices play 
a role similar to the two-terminal switching elements in Hodgkin-Huxley equivalent 
circuit diagrams. The devices provide simpler and more realistic neuron emulation 
than transistors or op-amps. They have such low power and current requirements 
that they could be used in massive neural networks. Some observed properties of 
simple circuits containing the devices include action potentials, refractory periods, 
threshold behavior, excitation, inhibition, summation over synaptic inputs, synaptic 
weights, temporal integration, memory, network connectivity modification based on 
experience, pacemaker activity, firing thresholds, coupling to sensors with graded sig­
nal outputs and the dependence of firing rate on input current. Transfer functions 
for simple artificial neurons with spiketrain inputs and spiketrain outputs have been 
measured and correlated with input coupling. 

INTRODUCTION 

Here we discuss the simulation of neuron phenomena by electronic processes in 
silicon from the point of view of hardware for new approaches to electronic processing 
of information which parallel the means by which information is processed in intelli­
gent organisms. Development of this hardware basis is pursued through exploratory 
work on circuits which exhibit some basic features of biological neural networks. Fig. 1 
shows the basic circuit used to obtain spiketrain outputs. A distinguishing feature 
of this hardware basis is the spontaneous generation of action potentials as a device 
physics feature. 
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Figure 1: Spontaneous, 
neuronlike spiketrain 
generating circuit. The 
spikes are nearly equal in 
amplitude so that 
information is contained in 
the frequency and 
temporal pattern of the 
spiketrain generation. 
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TWO-TERMINAL SWITCHING ELEMENTS 

The use of transistor based circuitry 1 is avoided because transistor electrical 
characteristics are not similar to neuron characteristics. The use of devices with 
fundamentally non-neuronlike character increases the complexity of artificial neural 
networks. Complexity would be an important drawback for massive neural networks 
and most neural networks in nature achieve their remarkable performance through 
their massive size. In addition) transistors have three terminals whereas the switching 
elements of Hodgkin-Huxley equivalent circuits have two terminals. Motivated in 
part by Hodgkin-Huxley equivalent circuit diagrams) we employ two-terminal p+ -
n - n+ devices which execute transient switching between low conductance and high 
conductance states. (See Fig. 2) We call these devices injection mode devices (IMDs). 
In the "OFF-STATE", a typical current through the devices is '" 100fA/mm2) and 
in the "ON-STATE" a typical current is '" 10mA/mm2. Hence this device is an 
extremely good switch with a ON / 0 F F ratio of 1011. As in real neurons2, the current 
in the device is a function of voltage and time, not only voltage. The devices require 
cryogenic cooling but this results in an advantageously low quiescent power drain of 
< 1 nanowatt/cm2 of chip area and the very low leakage currents mentioned above. 
In addition, the highly unique ability of the neural networks described here to operate 
in a cryogenic environment is an important advantage for infrared image processing 
at the focal plane (see Fig. 3 and further discussion below). Vision systems begin 
processing at the focal plane and there are many benefits to be gained from the 
vision system approach to IR image processing. 
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Figure 2: Switching element 
in Hodgkin-Huxley equivalent cir­
cuits. 

Figure 3: Single stage conversion of 
infrared intensity to spiketrain fre­
quency with a neuron-like semicon­
ductor device. No pre-amplifiers 
are necessary. 

Coding of graded input signals (see Fig. 4) such as photocurrents into ac­
tion potential spike trains with millimeter scale devices has been experimentally 
demonstrated3 with currents from 1 IlA down to about 1 picoampere with coding 
noise referred to input of < 10 femtoamperes. Coding of much smaller current levels 
should be possible with smaller devices. Figure 5 clearly shows the threshold behavior 
of the IMD. For devices studied to date, a transition from action potential output to 
graded signal output is observed for input currents of the order of 0.5 picoamperes 1~ 
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Figure 4: Coding of NIR-VISmLE-UV intensity into firing frequency of a spiketrain 
and the experimentally determined firing rate vs. the input current for one device. 
Note that the dynamic range is about 107 . 
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Figure 5: mustration of the threshold firing of the 
device in response to input step functions. 

This transition is remarkably well described in von Neumann's discussion5,6 of 
the mixed character of neural elements which he relates to the concept of sublimi­
nal stimulation levels which are too low to produce the stereotypical all-or-nothing 
response. Neural network modelers frequently adopt viewpoints which ignore this 
interesting mixed character. The von Neumann viewpoint links the mixed character 
to concepts of nonlinear dynamics in a way which is not apparent in recent neural 
network modeling literature. The scaling down of IMD size should result in even 
lower current requirements for all-or-nothing response. 

DEVICE PHYSICS 

Recently, neuronlike action potential transients in IMDs have been the subject 
of considerable research3 ,4,7,8,9,1O,1l,12,13. In the simple circuits of Fig. 1, the IMD 
gives rise to a spontaneous neuronlike spiketrain output. Between pulses, the IMD is 
polarized in the sense that it is in a low conductance state with a substantial voltage 
occurring across it, even though it is forward biased. The low conductance has been 
attributed to small interfacial work functions due to band offsets at the n+ -n and 
p+ -n interfaces8 • 

Low temperatures inhibit thermionic injection of electrons and holes into the 
n-region from the n+ -layer and p+ -layer impurity bands14 . Pulses are caused by 
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switching to depolarized states with low diode potential drops and large injection 
currents which are believed to be triggered by the slow buildup of a small thermionic 
injection current from the n+ -layer into the n-region. The injection current can cause 
impact ionization of n-region donor impurities resulting in an increasingly positive 
space charge which further enhances the injection current to the point where the IMD 
abruptly switches to the low conductance state with large injection current. Switching 
times are typically under lOOns. Charging of the load capacitance CL cuts off the 
large injection current and resets the diode to its low conductance state. The load 
capacitor CL then discharges through RL. During the CL discharging time constant 
RLCL the voltage across the IMD itself is low and therefore the bias voltage would 
have to be raised substantially to cause further firing. Thus, RLCL is analogous to 
the refractory period of a neuron. The output pulses of an IMD generally have about 
the same amplitude while the rate of pulsing varies over a wide range depending on 
the bias voltage and the presence of electromagnetic radiation.7,8,10 
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Figure 6: lllustrative 
laminar architecture 
showing stacked wafers in 
3-dimensions. 

REAL TIME PARALLEL ASYNCHRONOUS PROCESSING 

The devices described here could form the hardware basis for a parallel asyn­
chronous processor in much the same way that transistors form the basis for digital 
computers. The devices could be used to construct networks which could perform real 
time signal processing. Pulse propagation through silicon chips (parallel firethrough, 
see Fig. 7) as opposed to the lateral planar propagation in conventional integrated 
circuits has been proposed.1S This would permit the use of laminar, stacked wafer 
architectures. See Fig. 6. 

Such architectures would eliminate the serial processing limitations of stan­
dard processors which utilize multiplexing and charge transfer. There are additional 
advantages in terms of elimination of pre-amplifiers and reduction in power consump­
tion. The approach would utilize the low power, low noise deviceslO described here 
to perform input signal-to-frequency conversion in every processing channel. 

POWER CONSUMPTION FOR A BRAIN SCALE SYSTEM 

The low power and low current requirements together with the electronic sim­
plicity (lower parts-count as compared with transistor and op-amp approaches) and 
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Figure 7: Schematic illus­
tration of the signal flow 
pattern through a real time 
parallel asynchronous pro­
cessor consisting of stacked 
silicon wafers. 

the natural emulation of neuron features means that the approach described here 
would be especially advantageous for very large neural networks, e.g. systems com­
parable to supercomputers in which power dissipation and system complexity are im­
portant considerations. The power consumption of large scale analog16 and digital17 

systems is always a major concern. For example, the power consumption of the 
CRAY XMP-48 is of the order of 300 kilowatts. For the devices described here, the 
power consumption is very low. For these devices, we have observed quiescent power 
drains of about 1 n W /cm2 and pulse power consumption of about 500 nJ/pulse/cm2 • 

We estimate that a system with 1011 active 10~m x 10~m elements (comparable 
to the number of neurons in the brain18) all firing with an average pulse rate of 1 
KHz (corresponding to a high neuronal firing rateS) would consume about 50 watts. 
The quiescent power drain for this system would be 0.1 milliwatts. Thus, power 
(P) requirements for such an artificial neural network with the size scale (1011 pulse 
generating elements) of the human brain and a range of activity between zero and 
the maximum conceivable sustained activity for neurons in the brain would be 0.1 
milliwatts < P < 50 watts for 10 micron technology. For comparison, we note that 
von Neumann's estimate for the power dissipation of the brain is of order 10 to 25 
watts. S,6 Fabrication of a 1011 element 10 ~m artificial neural network would require 
processing of about 1500 four inch wafers. 

NETWORK CONNECTIVITY 

For a network with coupling between many IMD's3 we have shown" that 

(1) 

where Vj is the voltage across the diode and the input capacitance Cj of the i-th 
network node, Rj represents a leakage resistance in parallel with Cil and Ij represents 
an external current input to the i-th diode. iJ=1,2,3, ..... label different network nodes 
and Tij incoporates coupling between network elements. Equation 1 has the same 
form as equations which occur in the Hopfield modeI2o,21,22,23 for neural networks. 
Sejnowski has also discussed similar equations in connection with skeleton filters in 
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Figure 8: a) Main features of a typical neuron from Kandel and Schwartz.19 b) Our 
artificial neuron) which shows the summation over synaptic inputs and fan-out. 

the brain.24•25 Nonlinear threshold behavior of IMD)s enters through F(V) as it does 
in the neural network models. 

In Fig. 8-b a range of input capacitances is possible. This range of capacitances 
is related to the range of possible synaptic weights. The circuit in Fig. 8 accomplishes 
pulse height discrimination and each pulse can contribute to the charge stored on 
the central node capacitance C. The charge added to C during each input pulse is 
linearly related to the input capacitance except at extreme limits. The range of input 
capacitances for a particular experiment was .002 J-lF to .2 J-lF which differ by a factor 
of about 100. The effect of various input capacitance values (synaptic weights) on 
input-output firing rates is shown in Fig. 9. Also the Fig. 8-b shows many capacitive 
inputs/outputs to/from a single IMD. i.e. fan-in and fan-out. For pulses which arrive 
at different inputs at about the same time) the effect of the pulses is additive. The 
time within which inputs are summed is just the stored charge lifetime. Summation 
over many inputs is an important feature of neural information processing. 

EXCITATION) INHIBITION) MEMORY 

Both excitatory and inhibitory input circuits are shown in Fig. 10. Input pulses 
cause the accumulation of charge on C in excitatory circuits and the depletion of 
charge on C in inhibitory circuits. Charge associated with input spiketrains is inte­
grated/stored on C. The temporally integrated charge is depleted by the firing of the 
IMD. Thus) the storage time is related to the firing rate. After an input spiketrain 
raises the potential across C to a value above the firing threshold) the resulting IMD 
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Figure 9: Output pulse 
rate vs. the input 
pulse rate for different 
input capacitance 
values Ci values 
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Figure 10: Circuits which incorporate rec­
tifying synaptic inputs. a) an excitatory 
input. b) an inhibitory input. 

output spiketrain codes the input information. The output firing rate is linearly re­
lated to the input firing rate times the synaptic coupling strength (linearly related to 
Ci). See Fig. 9. If the input ceases, then the potential across C relaxes back to a value 
just below the firing threshold. When not firing, the IMD has a high impedance. If 
there is negligible leakage of charge from C, then V can remain near V T (threshold 
voltage) for a long time and a new input signal will quickly take the IMD over the 
firing threshold. See Fig. 11. We have observed stored charge lifetimes of 56 days and 
longer times may be acheivable. The lifetime of charge stored on C can be reduced 
by adding a resistance in parallel with C. 

From the discussion of integration, we see that long term storage of charge on C 
is equivalent to long term memory. The memory can be read by seeing if a new input 
pulse or spiketrain produces a prompt output pulse or spiketrain. The read signal 
input channel in Fig. 8-b can be the same as or different from the channel which 
resulted in the charge storage. In either case memory would produce a change in the 
pattern of connectivity if the circuit was imbedded in a neural network. Changes in 
patterns of connectivity are similar to Hebb's ruie considerations26 in which memory 
is associated with increases in the strength (weight) of synaptic couplings. Frequently, 
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Figure 11: Firing rate vs. the bias voltage. 
The region where the firing is negligible is 
associated with memory. The state of the 
memory is associated with the proximity 
to the firing threshold. 

the increase in synaptic weights is modeled by increased conductance whereas in the 
circuits in Figs. lO(a) and 8-b memory is achieved by integration and charge storage. 
Note that for these particular circuits, the memory is not eraseable although volatile 
(short term) memory can easily be constructed by adding a resistor in parallel with 
C. Thus, a continuous range of memory lifetimes can be achieved. 

2-D PARALLEL ASYNCHRONOUS CHIP-TO-CHIP TRANSMISSION 

For many IMD's the output pulse heights for a circuit like that in Fig. 1 are 
>3 volts. Thus, output from the first stage or any later stage of the network could 
easily be transmitted to other parts of an overall system. Two-dimensional arrays 
of devices on different chips could be coupled by indium bump bonding to form 
the laminar architecture described above. Planar technology could be used for local 
lateral interconnections in the processor. (See Fig. 7) In addition to transmission of 
electrical pulses, optical transmission is possible because the pulses can directly drive 
LED's. 

Emerging GaAs-on-Si technology is interesting as a means of fabricating two 
dimensional emitter arrays. Optical transmission is not necessary but it might be 
useful (A) for processed image data transfer, (B) for coupling to an optical proces­
sor, or (C) to provide 2-0 optical interconnects between chips bearing 2-D arrays of 
p+ - n - n+ diodes. Note that with optical interconnects between chips, the circuits 
employed here would be internal receivers. The p-i-n diodes employed in the present 
work would be well suited to the receiver role. An interesting possibility would en­
tail the use optical interconnects between chips to achieve local, lateral interaction. 
This would be accomplished by having each optical emitter in a 2-D array broadcast 
locally to multiple receivers rather than to a single receiver. Similarly, each receiver 
would have a reeeptive field extending over multiple transmitters. It is also possible 
that an optical element could be placed in the gap between parallel transmitter and 
receiver planes to structure, control or alter 2-D patterns of interconnection. This 
would be an alternative to a planar technology approach to lateral interconnection. 
IT the optical elements were active then the system would constitute a hybrid opti­
cal/electronic processor, whereas if passive optical elements were employed, we would 
regard the system as an optoelectronic processor. In either case, we picture the pro­
cessing functions of temporal integration, spatial summation over inputs, coding and 
pulse generation as residing on-chip. 
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