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Abstract 
Many optimization models of neural networks need constraints to restrict the space of outputs to 

a subspace which satisfies external criteria. Optimizations using energy methods yield "forces" which 
act upon the state of the neural network. The penalty method, in which quadratic energy constraints 
are added to an existing optimization energy, has become popular recently, but is not guaranteed 
to satisfy the constraint conditions when there are other forces on the neural model or when there 
are multiple constraints. In this paper, we present the basic differential multiplier method (BDMM), 
which satisfies constraints exactly; we create forces which gradually apply the constraints over time, 
using "neurons" that estimate Lagrange multipliers. 

The basic differential multiplier method is a differential version of the method of multipliers 
from Numerical Analysis. We prove that the differential equations locally converge to a constrained 
minimum. 

Examples of applications of the differential method of multipliers include enforcing permutation 
codewords in the analog decoding problem and enforcing valid tours in the traveling salesman problem. 

1. Introduction 
Optimization is ubiquitous in the field of neural networks. Many learning algorithms, such as 

back-propagation,18 optimize by minimizing the difference between expected solutions and observed 
solutions. Other neural algorithms use differential equations which minimize an energy to solve 
a specified computational problem, such as associative memory, D differential solution of the trav­
eling salesman problem,s,lo analog decoding,lS and linear programming.1D Furthennore, Lyapunov 
methods show that various models of neural behavior find minima of particular functions.4,D 

Solutions to a constrained optimization problem are restricted to a subset of the solutions of the 
corresponding unconstrained optimization problem. For example, a mutual inhibition circuitS requires 
one neuron to be "on" and the rest to be "off". Another example is the traveling salesman problem,ls 
where a salesman tries to minimize his travel distance, subject to the constraint that he must visit 
every city exactly once. A third example is the curve fitting problem, where elastic splines are as 
smooth as possible, while still going through data points.s Finally, when digital decisions are being 
made on analog data, the answer is constrained to be bits, either 0 or 1.14 

A constrained optimization problem can be stated as 

minimize / (~), 

subject to g(~) = 0, 
(1) 

where ~ is the state of the neural network, a position vector in a high-dimensional space; f(~) is a 
scalar energy, which can be imagined as the height of a landscape as a function of position~; g(~) = 0 
is a scalar equation describing a subspace of the state space. During constrained optimization, the 
state should be attracted to the subspace g(~) = 0, then slide along the subspace until it reaches the 
locally smallest value of f(~) on g(~) = O. 

In section 2 of the paper, we describe classical methods of constrained optimization, such as the 
penalty method and Lagrange multipliers. 

Section 3 introduces the basic differential multiplier method (BDMM) for constrained optimiza­
tion, which calcuIates a good local minimum. If the constrained optimization problem is convex, then 
the local minimum is the global minimum; in general, finding the global minimum of non-convex 
problems is fairly difficult. 

In section 4, we show a Lyapunov function for the BDMM by drawing on an analogy from 
physics. 
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In section 5, augmented Lagrangians, an idea from optimization theory, enhances the convergence 
properties of the BDMM. 

In section 6, we apply the differential algorithm to two neural problems, and discuss the insen­
sitivity of BDMM to choice of parameters. Parameter sensitivity is a persistent problem in neural 
networks. 

2. Classical Methods of Constrained Optimization 
This section discusses two methods of constrained optimization, the penalty method and Lagrange 

multipliers. The penalty method has been previously used in differential optimization. The basic 
differential multiplier method developed in this paper applies Lagrange multipliers to differential 
optimization. 

2.l. The Penalty Method 
The penalty method is analogous to adding a rubber band which attracts the neural state to 

the subspace g(~) = o. The penalty method adds a quadratic energy term which penalizes viola­
tions of constraints. 8 Thus, the constrained minimization problem (1) is converted to the following 
unconstrained minimization problem: 

(2) 

Figure 1. The penalty method makes a trough in state space 

The penalty method can be extended to fulfill multiple constraints by using more than one rubber 
band. Namely, the constrained optimization problem 

minimize f (.~), 
8ubject to go (~) = OJ a = 1,2, ... , n; 

(3) 

is converted into unconstrained optimization problem 

n 

minimize l'pena1ty(~) = f(~) + L Co(go(~))2. (4) 
0:::1 

The penalty method has several convenient features. First, it is easy to use. Second, it is globally 
convergent to the correct answer as Co - 00.8 Third, it allows compromises between constraints. For 
example, in the case of a spline curve fitting input data, there can be a compromise between fitting 
the data and making a smooth spline. 
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However, the penalty method has a number of disadvantages. First, for finite constraint strengths 
COl' it doesn't fulfill the constraints exactly. Using multiple rubber band constraints is like building 
a machine out of rubber bands: the machine would not hold together perfectly. Second, as more 
constraints are added, the constraint strengths get harder to set, especially when the size of the 
network (the dimensionality of .u gets large. 

In addition, there is a dilemma to the setting of the constraint strengths. If the strengths are small, 
then the system finds a deep local minimum, but does not fulfill all the constraints. If the strengths 
are large, then the system quickly fulfills the constraints, but gets stuck in a poor local minimum. 

2.2. Lagrange Multipliers 
Lagrange multiplier methods also convert constrained optimization problems into unconstrained 

extremization problems. Namely, a solution to the equation (1) is also a critical point of the energy 

(5) 

). is called the Lagrange multiplier for the constraint g(~) = 0.8 

A direct consequence of equation (5) is that the gradient of f is collinear to the gradient of 9 at 
the constrained extrema (see Figure 2). The constant of proportionality between 'i1 f and 'i1 9 is -).: 

'i1 'Lagrange = 0 = 'i1 f + ). 'i1 g. (6) 

We use the collinearity of 'i1 f and 'i1 9 in the design of the BDMM. 

Figure 2. At the constrained minimum, 'i1 f = -). 'i1 9 

A simple example shows that Lagrange multipliers provide the extra degrees of freedom necessary 
to solve constrained optimization problems. Consider the problem of finding a point (x, y) on the 
line x + y = 1 that is closest to the origin. Using Lagrange multipliers, 

'Lagrange = x2 + y2 + ).(x + y - 1) 

Now, take the derivative with respect to all variables, x, y, and A. 

aeLagrange = 2x + A = 0 
ax 

a'Lagrange = 2y + A = 0 
ay 

a'Lagrange = x + y - 1 = 0 
a). 

(7) 

(8) 
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With the extra variable A, there are now three equations in three unknowns. In addition, the last 
equation is precisely the constraint equation. 

3. The Basic Differential Multiplier Method for Constrained Optimization 
This section presents a new "neural" algorithm for constrained optimization, consisting of dif­

ferential equations which estimate Lagrange multipliers. The neural algorithm is a variation of the 
method of multipliers, first presented by Hestenes9 and Powell 16 • 

3.1. Gradient Descent does not work with Lagrange Multipliers 
The simplest differential optimization algorithm is gradient descent, where the state variables of 

the network slide downhill, opposite the gradient. Applying gradient descent to the energy in equation 
(5) yields 

x. - _ a!Lagrange = _ al _ A ag 
, - ax· ax· ax' ' , " 
\. a!Lagrange ( ) 
J\ = - = -g * aA . 

(9) 

Note that there is a auxiliary differential equation for A, which is an additional "neuron" necessary 
to apply the constraint g(~) = O. Also, recall that when the system is at a constrained extremum, 
VI = -AVg, hence, x. = O. 

Energies involving Lagrange multipliers, however, have critical points which tend to be saddle 
points. Consider the energy in equation (5). If ~ is frozen, the energy can be decreased by sending 
A to +00 or -00. 

Gradient descent does not work with Lagrange multipliers, because a critical point of the energy 
in equation (5) need not be an attractor for (9). A stationary point must be a local minimum in order 
for gradient descent to converge. 

3.2. The New Algorithm: the Basic Differential Multiplier Method 
We present an alternative to differential gradient descent that estimates the Lagrange multipliers, 

so that the constrained minima are attractors of the differential equations, instead of "repulsors." The 
differential equations that solve (1) is 

. al ag 
X' =---A-, ax, ax.' 
i = +g(*). 

(10) 

Equation (10) is similar to equation (9). As in equation (9), constrained extrema of the energy 
(5) are stationary points of equation (10). Notice, however, the sign inversion in the equation for i, 
as compared to equation (9). The equation (10) is performing gradient ascent on A. The sign flip 
makes the BDMM stable, as shown in section 4. 

Equation (10) corresponds to a neural network with anti-symmetric connections between the A 
neuron and all of the ~ neurons. 

3.3. Extensions to the Algorithm 
One extension to equation (10) is an algorithm for constrained minimization with multiple con­

straints. Adding an extra neuron for every equality constraint and summing all of the constraint forces 
creates the energy 

!multiple = !(~) + I: Ao<ga(~), 
which yields differential equations 

0< 

x' - _ al _ "" A agcr. 
,- ax' ~ 0< ax' ) 

'0< ' 

(11) 

(12) 
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Another extension is constrained minimization with inequality constraints. As in traditional 
optimization theory.8 one uses extra slack variables to convert inequality constraints into equality 
constraints. Namely. a constraint of the form h(~) ~ 0 can be expressed as 

(13) 

Since Z2 must always be positive, then h(~) is constrained to be positive. The slack variable z is 
treated like a component of ~ in equation (10). An inequality constraint requires two extra neurons, 
one for the slack variable % and one for the Lagrange multiplier ~. 

Alternatively, the inequality constraint can be represented as an equality constraint For example, 
if h(~) ~ 0, then the optimization can be constrained with g(~) = h(.~), when h(~) ~ 0; and 
g(.~) = 0 otherwise. 

4. Why the algorithm works 
The system of differential equations (10) (the BDMM) gradually fulfills the constraints. Notice 

that the function g(~) can be replaced by kg(~), without changing the location of the constrained 
minimum. As k is increased, the state begins to undergo damped oscillation about the constraint 
subspace g(~) = o. As k is increased further, the frequency of the oscillations increase, and the time 
to convergence increases. 

constraint subspace 

./ • 
.,.­

/' 

initial state 

path of algorithm 

" \ 
\ 

Figure 3. The state is attracted to the constraint subspace 

The damped oscillations of equation (10) can be explained by combining both of the differential 
equations into one second-order differential equation. 

(14) 

Equation (14) is the equation for a damped mass system, with an inertia term Xi. a damping matrix 

(15) 

and an internal force, gOg/O%i, which is the derivative of the internal energy 

(16) 
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If the system is damped and the state remains bounded, the state falls into a constrained minima. 
As in physics, we can construct a total energy of the system, which is the sum of the kinetic and 

potential energies. 

E = T + U = L i(xd2 + i(g(~))2 . , (17) 

If the total energy is decreasing with time and the state remains bounded, then the system will 
dissipate any extra energy, and will settle down into the state where 

which is a constrained extremum of the original problem in equation (1). 
The time derivative of the total energy in equation (17) is 

= - Lx,A,jxj. 
',i 

If damping matrix Aii is positive definite, the system converges to fulfill the constraints. 

(18) 

(19) 

BDMM always converges for a special case of constrained optimization: quadratic programming. 
A quadratic programming problem has a quadratic function f(~) and a piecewise linear continuous 
function g(~) such that 

(20) 

Under these circumstances, the damping matrix Aii is positive definite for all ~ and A, so that the 
system converges to the constraints. 

4.1. Multiple constraints 

For the case of multiple constraints, the total energy for equation (12) is 

E = T + U = L i(Xi)2 + L igo(~)2. 
i 0 

(21) 

and the time derivative is 

(22) 

Again, BDMM solves a quadratic programming problem, if a solution exists. However, it is 
possible to pose a problem that has contradictory constraints. For example, 

gdx) = x = 0, g2(X) = x-I = 0 (23) 

In the case of conflicting constraints, the BDMM compromises, trying to make each constraint go as 
small as possible. However, the Lagrange multipliers Ao goes to ±oo as the constraints oppose each 
other. It is possible, however, to arbitrarily limit the Ao at some large absolute value. 
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LaSalle's invariance theorem12 is used to prove that the BDMM eventually fulfills the constraints. 
Let G be an open subset of Rn. Let F be a subset of G*, the closure of G, where the system of 
differential equations (12) is at an equilibrium. 

(24) 

If the damping matrix 
a2 f a2g -----:;_ + '" A a ax, ax; ~ a ax,ax; (25) 

is positive definite in G, if xa{ t) and Aa (t) are bounded, and remain in G for all time, and ~f F 
is non-empty, then F is the largest invariant set in G*, hence, by LaSalle's invariance theorem, the 
system x, (t), Aa (t) approaches Fast -+ 00. 

5. The Modified Differential Method of Multipliers 
This section presents the modified differemiaI multiplier method (MDMM), which is a modifi­

cation of the BDMM with more robust convergence properties. For a given constrained optimization 
problem, it is frequently necessary to alter the BDMM to have a region of positive damping surround­
ing the constrained minima. The non-differential method of multipliers from Numerical Analysis also 
has this difficulty. 2 Numerical Analysis combines the multiplier method with the penalty method to 

yield a modified multiplier method that is locally convergent around constrained minima. 2 

The BDMM is completely compatible with the penalty method. If one adds a penalty force to 
equation (10) corresponding to an quadratic energy 

Epenalty = ~(g(~))2. 

then the set of differential equations for MDMM is 

. af ag ag x, = -- - A- - cg-, ax, ax, ax, 
j = g(~). 

(26) 

(27) 

The extra force from the penalty does not change the position of the stationary points of the differential 
equations, because the penalty force is 0 when g(~) = O. The damping matrix is modified by the 
penalty force to be 

(28) 

There is a theorem 1 that states that there exists a c* > 0 such that if c > c*, the damping matrix 
in equation (28) is positive definite at constrained minima. Using continuity, the damping matrix is 
positive definite in a region R surrounding each constrained minimum. If the system starts in the 
region R and remains bounded and in R, then the convergence theorem at the end of section 4 is 
applicable, and MDMM will converge to a constrained minimum. 

The minimum necessary penalty strength c for the MDMM is usually much less than the strength 
needed by the penalty method alone.2 

6. Examples 
This section contains two examples which illustrate the use of the BDMM and the MDMM. First, 

the BDMM is used to find a good solution to the planar traveling salesman problem. Second, the 
MDMM is used to enforcing mutual inhibition and digital results in the task of analog decoding. 

6.1. Planar Traveling Salesman 
The traveling salesman problem (fSP) is, given a set of cities lying in the plane, find the shortest 

closed path that goes through every city exactly once. Finding the shortest path is NP-complete. 
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Finding a nearly optimal path, however, is much easier than finding a globally optimal path. There 
exist many heuristic algorithms for approximately solving the traveling salesman problem.5,10,11,13 

The solution presented in this section is moderately effective and illustrates the independence of 
BDMM to changes in parameters. 

Following Durbin and Willshaw,5 we use an elastic snake to solve the TSP. A snake is a discretized 
curve which lies on the plane. The elements of the snake are points on the plane, (Xi, Yd. A snake 
is a locally connected neural network, whose neural outputs are positions on the plane. 

The snake minimizes its length 

2:)Xi+1 - x,)2 - (Yi+l - Yi)2, 
i 

subject to the constraint that the snake must lie on the cities: 

(29) 

k(x* - xc) = 0, k(y* - Yc) = 0, (30) 
where (x*, y*) are city coordinates, (xc, Yc) is the closest snake point to the city, and k is the constraint 
strength. 

The minimization in equation (29) is quadratic and the constraints in equation (30) are piecewise 
linear, corresponding to a CO continuous potential energy in equation (21). Thus, the damping is 
positive definite, and the system converges to a state where the constraints are fulfilled. 

In practice, the snake starts out as a circle. Groups of cities grab onto the snake, deforming 
it As the snake gets close to groups of cities, it grabs onto a specific ordering of cities that locally 
minimize its length (see Figure 4). 

The system of differential equations that solve equations (29) and (30) are piecewise linear. The 
differential equations for Xi and Yi are solved with implicit Euler's method, using tridiagonal LV 
decomposition to solve the linear system.17 The points of the snake are sorted into bins that divide 
the plane, so that the computation of finding the nearest point is simplified. 

Figure 4. The snake eventually attaches to the cities 

The constrained minimization in equations (29) and (30) is a reasonable method for approximately 
solving the TSP. For 120 cities distributed in the unti square, and 600 snake points, a numerical step 
size of 100 time units, and a constraint strength of 5 x 10-3 , the tour lengths are 6% ± 2% longer 
than that yielded by simulated annealing11 . Empirically, for 30 to 240 cities, the time needed to 
compute the final city ordering scales as N1.6, as compared to the Kernighan-Lin method13 , which 
scales roughly as N 2.2 • 

The constraint strength is usable for both a 30 city problem and a 240 city problem. Although 
changing the constraint strength affects the performance, the snake attaches to the cities for any non­
zero constraint strength. Parameter adjustment does not seem to be an issue as the number of cities 
increases, unlike the penalty method. 
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6.2. Analog Decoding 
Analog decoding uses analog signals from a noisy channel to reconstruct codewords. Analog 

decoding has been performed neurally,15 with a code space of permutation matrices, out of the 
possible space of binary matrices. 

To perform the decoding of permutation matrices, the nearest permutation matrix to the signal 
matrix must be found. In other words, find the nearest matrix to the signal matrix, subject to the 
constraint that the matrix has on/off binary elements, and has exactly one "on" per row and one "on" 
per column. If the signal matrix is Ii; and the result is Vi;, then minimize 

- "v.. ,1-. L..J ., ., (31) 
i ,; 

subject to constraints 

Vi,,(l- Vi;) = OJ LVi" -1 = O. (32) 
; 

In this example, the first constraint in equation (32) forces crisp digital decisions. The second 
and third constraints are mutual inhibition along the rows and columns of the matrix. 

The optimization in equation (31) is not quadratic, it is linear. In addition, the first constraint in 
equation (32) is non-linear. Using the BDMM results in undamped oscillations. In order to converge 
onto a constrained minimum, the MDMM must be used. For both a 5 x 5 and a 20 x 20 system, a 
c = 0,2 is adequate for damping the oscillations. The choice of c seems to be reasonably insensitive 
to the size of the system, and a wide range of c, from 0.02 to 2.0, damps the oscillations . 
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Figure 5. The decoder finds the nearest permutation matrix 

In a test of the MDMM, a signal matrix which is a permutation matrix plus some noise, with 
a signal-to-noise ratio of 4 is supplied to the network. In figure 5, the system has turned on the 
correct neurons but also many incorrect neurons. The constraints start to be applied, and eventually 
the system reaches a permutation matrix. The differential equations do not need to be reset. If a new 
signal matrix is applied to the network, the neural state will move towards the new solution. 

7. ConClusions 
In the field of neural networks, there are differential optimization algorithms which find local 

solutions to non-convex problems. The basic differential multiplier method is a modification of a 
standard constrained optimization algorithm, which improves the capability of neural networks to 
perform constrained optimization. 

The BDMM and the MDMM offer many advantages over the penalty method. First, the differ­
ential equations (10) are much less stiff than those of the penalty method. Very large quadratic terms 
are not needed by the MDMM in order to strongly enforce the constraints. The energy terrain for the 
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penalty method looks like steep canyons, with gentle floors; finding minima of these types of energy 
surfaces is numerically difficult In addition, the steepness of the penalty tenns is usually sensitive 
to the dimensionality of the space. The differential multiplier methods are promising techniques for 
alleviating stiffness. 

The differential multiplier methods separate the speed of fulfilling the constraints from the ac­
curacy of fulfilling the constraints. In the penalty method, as the strengths of a constraint goes to 
00, the constraint is fulfilled, but the energy has many undesirable local minima. The differential 
multiplier methods allow one to choose how quickly to fulfill the constraints. 

The BDMM fulfills constraints exactly and is compatible with the penalty method. Addition of 
penalty tenns in the MDMM does not change the stationary points of the algorithm, and sometimes 
helps to damp oscillations and improve convergence. 

Since the BDMM and the MDMM are in the form of first-order differential equations, they can 
be directly implemented in hardware. Performing constrained optimization at the raw speed of analog 
VLSI seems like a promising technique for solving difficult perception problems. 14 

There exist Lyapunov functions for the BDMM and the MDMM. The BDMM converges glob­
ally for quadratic programming. The MDMM is provably convergent in a local region around the 
constrained minima Other optimization algorithms, such as Newton's method,17 have similar lo­
cal convergence properties. The global convergence properties of the BDMM and the MDMM are 
currently under investigation. 

In summary, the differential method of multipliers is a useful way of enforcing constraints on 
neural networks for enforcing syntax of solutions, encouraging desirable properties of solutions, and 
making crisp decisions. 
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