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INTRODUCTION 

To us, and to other biological organisms, vision seems effortless. We open 
our eyes and we "see" the world in all its color, brightness, and movement. 
Yet, we have great difficulties when trying to endow our machines with similar 
abilities. In this paper we shall describe recent developments in the theory of 
early vision which lead from the formulation of the motion problem as an ill­
posed one to its solution by minimizing certain "cost" functions. These cost 
or energy functions can be mapped onto simple analog and digital resistive 
networks. Thus, we shall see how the optical flow can be computed by injecting 
currents into resistive networks and recording the resulting stationary voltage 
distribution at each node. These networks can be implemented in cMOS VLSI 
circuits and represent plausible candidates for biological vision systems. 

APERTURE PROBLEM AND SMOOTHNESS ASSUMPTION 

In this study, we use intensity-based schemes for recovering motion. Let us 
derive an equation relating the change in image brightness to the motion of the 
image (see l ). Let us assume that the brightness of the image is constant over 
time: dI(~,y,t)/dt = o. On the basis of the chain rule of differentiation, this 
transforms into 

81 d~ 81 dy 81 
8~ dt + 8y dt + at = Izu + Iyv + It = 'V I· v + It = 0, (1) 

where we define the velocity v as (u,v) = (d:1)/dt,dy/dt). Because we assume 
that we can compute these spatial and temporal image gradients, we are now 
left with a single linear equation in two unknowns, u and v, the two components 
of the velocity vector (aperture problem). Any measuring system with a finite 
aperture, whether biological or artificial, can only sense the velocity component 
perpendicular to the edge or along the spatial gradient (-It! 1 'V I I). The 
component of motion perpendicular to the gradient cannot, in principle, be 
registered. The problem remains unchanged even if we measure these velocity 
components at many points throughout the image. 

How can this problem be made well-posed, that is, having a unique solu­
tion depending continuously on the data? One form of "regularizing" ill-posed 

@ American Institute of Physics 1988 



423 

problems is to restrict the class of admissible solutions by imposing appropriate 
constraints2 • Applying this method to motion, we shall argue that in gen­
eral objects are smooth-except at isolated discontinuities-undergoing smooth 
movements. Thus, in general, neighboring points in the world will have similar 
velocities and the projected velocity field should reflect this fact. We therefore 
impose on the velocity field the constraint that it should be the smoothest as well 
as satisfying the data. As measure of smoothness we choose, the square of the 
velocity field gradient. The final velocity field (u, v) is the one that minimizes 

A J J [ (::)' + (::)' + (~:)' + (:~)'] dz dy (2) 
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Fig. 1. ( a) The location of the horizontal (lfj) and vertical (Iij) line processes 
relative to the motion field nngrid. (b) The hybrid resistive network, computing 
the optical flow in the presence of discontinuities. The conductances T c - ij con­
necting both grids depend on the brightness gradient, as do the conductances 
gij and gij connecting each node with the battery. For clarity, only two such 
elements are shown. The battery Eij depends on both the temporal and the 
spatial gradient and is zero if no brightness change occurs. The ~ (resp. y) com­
ponent of the velocity is given by the voltage in the top (resp. bottom) network. 
Binary switches, which make or break the resistive connections between nodes, 
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implement motion discontinuities. These switches could be under the control of 
distributed digital processors. Analog cMOS implementations are also feasible3 • 

The first term implements the constraint that the final solution should follow 
as closely as possible the measured data whereas the second term imposes the 
smoothness constraint on the solution. The degree to which one or the other 
terms are minimized is governed by the parameter).. If the data is very ac­
curate, it should be "expensive" to violate the first term and), will be small. 
If, conversely, the data is unreliable (low signal-to-noise), much more emphasis 
will be placed on the smoothness term. Horn and Schunck1 first formulated this 
variational approach to the motion problem. 

The energy E( u, v) is quadratic in the unknown u and v. It then follows 
from standard calculus of variation that the associated Euler-Lagrange equations 
will be linear in u and v: 

I~u + IzIyv - ). \721.£ + IzIt = 0 

I z I 1I u + I:v - ). \72 v + Iylt = O. 
(3) 

We now have two linear equations at every point and our problem is therefore 
completely determined. 

ANALOG RESISTIVE NETWORKS 

Let us assume that we are formulating eqs. (2) and (3) on a discrete 2-D 
grid, such as the one shown in fig. 1a. Equation (3) then transforms into 

I~ijuij + IzijI1Iijvij - ). (UHlj + Uij+l - 4Uij + Ui-lj + Uij-l) + IZijltij = 0 

Izijlyijuij + I:ijvij - ). (VHlj + Vij+l - 4Vij + Vi-lj + Vij-l) + Iyijltij = 0 
(4) 

where we replaced the Laplacian with its 5 point approximation on a rectangular 
grid. We shall now show that this set of linear equations can be solved naturally 
using a particular simple resistive network. Let us apply Kirchhoff's current law 
to the nodne i, j in the top layer of the resistive network shown in fig. lb. We 
then have the following update equation: 

du·· 
C d;' = T (Ui+lj + Uij+l - 4Uij + Ui-lj + Uij-l) 

(5) 
+ gij (Eij - Uij) + Tc-ij( Vij - Uij). 

where Vij is the voltage at node i, j in the bottom network. Once dUij / dt = 0 
and dVij/dt = 0, this equation is seen to be identical with eq. (4), if we identify 
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Tc-ij ~ -IzijIyij 

gij ~ Izij (Izij + IJlij) 

gij ~ Iyii (Izii + Iyij) 
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Fig. 2. Motion sequence using synthetic data. (a) and (b) Two images of 
three high contrast squares on a homogeneous background. (c) The initial 
velocity data. The inside of both squares contain no data. (d) The final state 
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of the network after 240 iterations, corresponding to the smooth optical flow 
field. (e) Optical flow in the presence of motion discontinuities (indicated by 
solid lines). (f) Discontinuities are strongly encouraged to form at the location 
of intensity edges4 • Both (e) and (f) show the state of the hybrid network after 
six analog-digital cycles. 

Once we set the batteries and the conductances to the values indicated in 
eq. (6), the network will settle-following Kirchhoff's laws-into the state of 
least power dissipation. The associated stationary voltages correspond to the 
sought solution: uii is equivalent to the :c component and Vii to the y component 
of the optical flow field. 

We simulated the behavior of these networks by solving the above circuit 
equations on parallel computers of the Hypercube family. As boundary condi­
tions we copied the initial velocity data at the edge of the image into the nodes 
lying directly adjacent but outside the image. 

The sequences in figs. 2 and 3 illustrate the resulting optical flow for syn­
thetic and natural images. As discussed by Horn and Schunck1 , the smoothness 
constraint leads to a qualitatively correct estimate of the velocity field. Thus, 
one undifferentiated blob appears to move to the lower right and one blob to 
the upper left. However, at the occluding edge where both squares overlap, the 
smoothness assumption results in a spatial average of the two opposing veloc­
ities, and the estimated velocity is very small or zero. In parts of the image 
where the brightness gradient is zero and thus no initial velocity data exists (for 
instance, the interiors of the two squares), the velocity estimates are simply the 
spatial average of the neighboring velocity estimates. These empty areas will 
eventually fill in from the boundary, similar to the How of heat for a uniform 
flat plate with "hot" boundaries. 

MOTION DISCONTINUITIES 

The smoothness assumption of Horn and Schunck1 regularizes the aperture 
problem and leads to the qualitatively correct velocity field inside moving ob­
jects. However, this approach fails to detect the locations at which the velocity 
changes abruptly or discontinuously. Thus, it smoothes over the figure-ground 
discontinuity or completely fails to detect the boundary between two objects 
with differing velocities because the algorithm combines velocity information 
across motion boundaries. 

A quite successful strategy for dealing with discontinuities was proposed by 
Geman and Geman5 • We shall not rigorously develop their approach, which is 
based on Bayesian estimation theory (for details see5,6). Suffice it to say that 
a priori knowledge, for instance, that the velocity field should in general be 
smooth, can be formulated in terms of a Markov Random Field model of the 
image. Given such an image model, and given noisy data, we then estimate 
the "best" flow field by some likelihood criterion. The one we will use here 
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is the maximum a posteriori estimate, although other criteria are possible and 
have certain advantages6 • This can be shown to be equivalent to minimizing an 
expression such as eq. (2). 

In order to reconstruct images consisting of piecewise constant segments, 
Geman and Geman5 further introduced the powerful idea of a line process 1. 
For our purposes, we will assume that a line process can be in either one of two 
states: "on" (1 = 1) or "off" (1 = 0). They are located on a regular lattice set 
between the original pixel lattice (see fig. 1a), such that each pixel i,j has a 
horizontallfi and a verticallij line process associated with it. If the appropriate 
line process is turned on, the smoothness term between the two adjacent pixels 
will be set to zero. In order to prevent line processes from forming everywhere 
and, furthermore, in order to incorporate additional knowledge regarding dis­
continuities into the line processes, we must include an additional term Vc(l) 
into the new energy function: 

E( 'IL, v, lh., IV) = L (Iz'ILii + IyVii + I t )2 + 
i.i 

). L (1 -It) [('lLi+1i - 'lLii)2 + (Vi+li - Vii)2] + 
i.i 

). L (1 -Iii) [('lLij+l - 'lLii)2 + (vii+1 - Vij)2] + Vc(l). 
i.i 

(7) 

Vc contains a number of different terms, penalizing or encouraging specific 
configurations of line processes: 

i.; i.i 

plus the corresponding expression for the vertical line process Iii (obtained by in­

terchanging i with j and Iii with Ifi). The first term penalizes each introduction 
of a line process, since the cost Cc has to be "payed" every time a line process 
is turned on. The second term prevents the formation of parallel lines: if either 
lfi+l or Ifi+2 is turned on, this term will tend to prevent It from turning on. 
The third term, CIVI , embodies the fact that in general, motion discontinuities 
occur along extended contours and rarely intersect (for more details see7 ). 

We obtain the optical flow by minimizing the cost function in eq. (7) with 
respect to both the velocity v and the line processes Ih. and IV. To find an 
optimal solution to this non-quadratic minimization problem, we follow Koch 
et a1. 7 and use a purely deterministic algorithm, based on solving Kirchhoff's 
equations for a mixed analogi digital network (see also 8). Our algorithm exploits 
the fact that for a fixed distribution of line processes, the energy function (7) 
is quadratic. Thus, we first initialize the analog resistive network (see fig. 2b) 
according to eq. (6) and with no line processes on. The network then converges to 
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the smoothest solution. Subsequently, we update the line processes by deciding 
at each site of the line process lattice whether the overall energy can be lowered 
by setting or breaking the line proceSSj that is, lfi will be turned on if E( u, v, lfi = 

1, IV) < E( u, v, Ifi = 0, IV); otherwise, Ifj = o. Line processes are switched on 
by breaking the appropriate resistive connection between the two neighboring 
nodes. After the completion of one such analog-digital cycle, we reiterate and 
compute-for the newly updated distribution of line processes-the smoothest 
state of the analog network. Although there is no guarantee that the system will 
converge to the global minimum, since we are using a gradient descent rule, it 
seems to find next-to-optimal solutions in about 10 to 15 analog-digital cycles. 

(8) 

(c) 

(e) 

Figure 3. Optical flow of a moving person. (a) and (b) Two 128 by 128 
pixel images captured by a video camera. The person in the foreground is 
moving toward the right while the person in the background is stationary. The 
noise in the lower part of the image is a camera artifact. (c) Zero-crossings 
superimposed on the initial velocity data. (d) The smooth optical flow after 1000 
iterations. Note that the noise in the lower part of both images is completely 
smoothed away. (e) The final piecewise smooth optical flow. The velocity 
field is subsampled to improve visibility. The evolution of the hybrid network is 
shown after the 1. (a), 3. (b), 5. (c), 7. (d), 10. (e), and 13. (f) analog-digital 
cycle in the right part of the figure. 

The synthetic motion sequence in fig. 2 demonstrates the effect of the line 
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processes. The optical flow outside the discontinuities approximately delineating 
the boundaries of the moving squares is zero, as it should be (fig. 2e). However, 
where the two squares overlap the velocity gradient is high and multiple inter­
secting discontinuities exist. To restrict further the location of discontinuities, we 
adopt a technique used by Gamble and Poggio4 to locate depth discontinuities 
by requiring that depth discontinuities coincide with the location of intensity 
edges. Our rationale behind this additional constraint is that with very few 
exceptions, the physical processes and the geometry of the 3-dimensional scene 
giving rise to the motion discontinuity will also give rise to an intensity edge. As 
edges we use the zero-crossings of a Laplacian of a Gaussian convolved with the 
original image9 • We now add a new term VZ-Cii to our energy function E, such 
that Vz -Cii is zero if Iii is off or if Iii is on and a zero-crossing exists between 
locations i and j. If Iii = 1 in the absence of a zero-crossing, V Z - Cii is set 
to 1000. This strategy effectively prevents motion discontinuities from forming 
at locations where no zero-crossings exist, unless the data strongly suggest it. 
Conversely, however, zero-crossings by themselves will not induce the formation 
of discontinuities in the absence of motion gradients (figs. 2f and 3). 

ANALOG VLSI NETWORKS 

Even with the approximations and optimizations described above, the com­
putations involved in this and similar early vision tasks require minutes to hours 
on computers. It is fortunate then that modern integrated circuit technology 
gives us a medium in which extremely complex, analog real-time implementa­
tions of these computational metaphors can be realized3 • 

We can achieve a very compact implementation of a resistive network using 
an ordinary cMOS process, provided the transistors are run in the sub-threshold 
range where their characterstics are ideal for implementing low-current analog 
functions. The effect of a resistor is achieved by a circuit configuration, such as 
the one shown in fig. 4, rather than by using the resistance of a special layer in 
the process. The value of the resulting resistance can be controlled over three 
orders of magnitude by setting the bias voltages on the upper and lower current 
source transistors. The current-voltage curve saturates above about 100 mVj a 
feature that can be used to advantage in many applications. When the voltage 
gradients are small, we can treat the circuit just as if it were a linear resistor. 
Resistances with an effective negative resistance value can easily be realized. 

In two dimensions, the ideal configuration for a network implementation is 
shown in fig. 4. Each point on the hexagonal grid is coupled to six equivalent 
neighbors. Each node includes the resistor apparatus, and a set of sample-and­
hold circuits for setting the confidence and signal the input and output voltages. 
Both the sample-and-hold circuits and the output buffer are addressed by a 
scanning mechanism, so the stored variables can be refreshed or updated, and 
the map of node voltages read out in real time. 
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Figure 4. Circuit design for a resistive network for interpolating and smoothing 
noisy and sparsely sampled depth measurements. (a) Circuit-consisting of 8 
transistors-implementing a variable nonlinear resistance. (b) If the voltage 
gradient is below 100 mV its approximates a linear resistance. The voltage VT 
controls the maximum current and thus the slope of the resistance, which can 
vary between 1 MO and 1 GO 3. This cMOS circuit contains 20 by 20 grid 
points on a hexagonal lattice. The individual resistive elements with a variable 
slope controlled by VT correspond to the term governing the smoothness, A. At 
those locations where a depth measurement dij is present, the battery is set to 
this value (Vin = dij ) and the value of the conductance G is set to some fixed 
value. If no depth data is present at that node, G is set to zero. The voltage 
at each node corresponds to the discrete values of the smoothed surface fitted 
through the noisy and sparse measurements7 • 

A 48 by 48 silicon retina has been constructed that uses the hexagonal 
network of fig. 4 as a model for the horizontal cell layer in the vertebrate 
retinal 0 • In this application, the input potentials were the outputs of loga­
rithmic photoreceptors-implemented via phototransistors-and the potential 
difference across the conductance T formed an excellent approximation to the 
Laplacian operator. 

DISCUSSION 

We have demonstrated in this study that the introduction of binary motion 
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discontinuities into the algorithm of Horn and Schunck1 leads to a dramatically 
improved performance ~f their method, in particular for the optical flow in the 
presence of a number of moving non-rigid objects. Moreover, we have shown 
that the appropriate computations map onto simple resistive networks. We are 
now implementing these resistive networks into VLSI circuits, using subtheshold 
cMOS technology. This approach is of general interest, because a great number 
of problems in early vision can be formulated in terms of similar non-convex 
energy functions that need to be minimized, such as binocular stereo, edge 
detection, surface interpolation, structure from motion, etc.2 ,6,8. 

These networks share several features with biological neural networks. Spe­
cifically, they do not require a system-wide clock, they rely on many connections 
between simple computational nodes, they converge rapidly-within several time 
constants-and they are quite robust to hardware errors. Another interesting 
feature is that our networks only consume very moderate amounts of powerj the 
entire retina chip requires about 100 J.L W 10 
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