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The SIMD parallelism of the Connection Machine (eM) allows the construction of 
neural network simulations by the use of simple data and control structures. Two 
approaches are described which allow parallel computation of a model's nonlinear 
functions, parallel modification of a model's weights, and parallel propagation of a 
model's activation and error. Each approach also allows a model's interconnect 
structure to be physically dynamic. A Hopfield model is implemented with each 
approach at six sizes over the same number of CM processors to provide a performance 
comparison. 

INTRODUCflON 

Simulations of neural network models on digital computers perform various 
computations by applying linear or nonlinear functions, defined in a program, to 
weighted sums of integer or real numbers retrieved and stored by array reference. The 
numerical values are model dependent parameters like time averaged spiking frequency 
(activation), synaptic efficacy (weight), the error in error back propagation models, and 
computational temperature in thermodynamic models. The interconnect structure of a 
particular model is implied by indexing relationships between arrays defined in a 
program. On the Connection Machine (CM), these relationships are expressed in 
hardware processors interconnected by a 16-dimensional hypercube communication 
network. Mappings are constructed to defme higher dimensional interconnectivity 
between processors on top of the fundamental geometry of the communication 
network. Parallel transfers are defined over these mappings. These mappings may be 
dynamic. CM parallel operations transform array indexing from a temporal succession 
of references to memory to a single temporal reference to spatially distributed 
processors. 

Two alternative approaches to implementing neural network simulations on the CM 
are described. Both approaches use "data parallelism" 1 provided by the *Lisp virtual 
machine. Data and control structures associated with each approach and performance 
data for a Hopfield model implemented with each approach are presented. 

DATA STRUCTURES 

The functional components of a neural network model implemented in *Lisp are 
stored in a uniform parallel variable (pvar) data structure on the CM. The data structure 
may be viewed as columns of pvars. Columns are given to all CM virtual processors. 
Each CM physical processor may support 16 virtual processors. In the fust approach 
described, CM processors are used to represent the edge set of a models graph 
structure. In the second approach described, each processor can represent a unit, an 
outgoing link, or an incoming link in a model's structure. Movement of activation (or 
error) through a model's interconnect structure is simulated by moving numeric values 
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over the eM's hypercube. Many such movements can result from the execution of a 
single CM macroinstruction. The CM transparently handles message buffering and 
collision resolution. However, some care is required on the part of the user to insure 
that message traffic is distributed over enough processors so that messages don't stack 
up at certain processors, forcing the CM to sequentially handle large numbers of 
buffered messages. Each approach requires serial transfers of model parameters and 
states over the communication channel between the host and the CM at certain times in a 
simulation. 

The first approach, "the edge list approach," distributes the edge list of a network 
graph to the eM, one edge per CM processor. Interconnect weights for each edge are 
stored in the memory of the processors. An array on the host machine stores the 
current activation for all units. This approach may be considered to represent abstract 
synapses on the eM. The interconnect structure of a model is described by product 
sets on an ordered pair of identification (id) numbers, rid and sid. The rid is the id of 
units receiving activation and sid the id of units sending activation. Each id is a unique 
integer. In a hierarchical network, the ids of input units are never in the set of rids and 
the ids of output units are never in the set of sids. Various set relations (e.g. inverse, 
reflexive, symmetric, etc.) defined over id ranges can be used as a high level 
representation of a network's interconnect structure. These relations can be translated 
into pvar columns. The limits to the interconnect complexity of a simulated model are 
the virtual processor memory limits of the CM configuration used and the stack space 
~uired by functions used to compute the weighted sums of activation. Fig. 1 shows a 
R -> R2 -> R4 interconnect structure and its edge list representation on the CM. 
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Fig. 1. Edge List Representation of a R3_> R2 -> R4 Interconnect Structure 

This representation can use as few as six pvars for a model with Hebbian 
adaptation: rid (i), sid (j), interconnect weight (wij), ract (ai), sact (aj), and learn rate 

(11)· Error back propagation requires the addition of: error (ei), old interconnect 

weight (wij(t-l», and the momentum term (ex). The receiver and sender unit 
identification pvars are described above. The interconnect weight pvar stores the 
weight for the interconnect. The activation pvar, sact, stores the current activation, aj' 
transfered to the unit specified by rid from the unit specified by sid. The activation 
pvar, ract, stores the current weighted activation ajwij- The error pvar stores the error 
for the unit specified by the sid. A variety of proclaims (e.g. integer, floating point, 
boolean, and field) exist in *Lisp to define the type and size ofpvars. Proclaims 
conserve memory and speed up execution. Using a small number of pvars limits the 
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amount of memory used in each CM processor so that maximum virtualization of the 
hardware processors can be realized. Any neural model can be specified in this fashion. 
Sigma-pi models require multiple input activation pvars be specified. Some edges may 
have a different number of input activation pvars than others. To maintain the uniform 
data structure of this approach a tag pvar has to be used to determine which input 
activation pvars are in use on a particular edge. 

The edge list approach allows the structure of a simulated model to "physically" 
change because edges may be added (up to the virtual processor limit), or deleted at any 
time without affecting the operation of the control structure. Edges may also be placed 
in any processor because the subselection (on rid or sid) operation performed before a 
particular update operation insures that all processors (edges) with the desired units are 
selected for the update. 

The second simulation approach, "the composite approach," uses a more 
complicated data structure where units, incoming links, and outgoing links are 
represented. Update routines for this approach use parallel segmented scans to form 
the weighted sum of input activation. Parallel segmented scans allow a MIMD like 
computation of the weighted sums for many units at once. Pvar columns have unique 
values for unit, incoming link, and outgoing link representations. The data structures 
for input units, hidden units, and output units are composed of sets of the three pvar 
column types. Fig. 2 shows the representation for the same model as in Fig. 1 
implemented with the composite approach. 
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Fig. 2. Composite Representation of a R3 -> R2 -> R4 Interconnect Structure 

In Fig. 2, CM processors acting as units, outgoing links, and incoming links are 
represented respectively by circles, triangles, and squares. CM cube address pointers 
used to direct the parallel transfer of activation are shown by arrows below the 
structure. These pointers defme the model interconnect mapping. Multiple sets of 
these pointers may be stored in seperate pvars. Segmented scans are represented by 
operation-arrow icons above the structure. A basic composite approach pvar set for a 
model with Hebbian adaptation is: forward B, forward A, forward transfer address, 

interconnect weight (Wij), act-l (ai), act-2 (aj), threshold, learn rate (Tl), current unit id 
(i), attached unit id U), level, and column type. Back progagation of error requires the 
addition of: backward B, backward A, backward transfer address, error (ei), previous 

interconnect weight (Wij(t-l», and the momentum tenn (ex). The forward and 
backward boolean pvars control the segmented scanning operations over unit 
constructs. Pvar A of each type controls the plus scanning and pvar B of each type 
controls the copy scanning. The forward transfer pvar stores cube addresses for 



130 

forward (ascending cube address) parallel transfer of activation. The backward transfer 
pvar stores cube addresses for backward (descending cube address) parallel transfer of 
error. The interconnect weight, activation, and error pvars have the same functions as 
in the edge list approach. The current unit id stores the current unit's id number. The 
attached unit id stores the id number of an attached unit. This is the edge list of the 
network's graph. The contents of these pvars only have meaning in link pvar columns. 
The level pvar stores the level of a unit in a hierarchical network. The type pvar stores 
a unique arbitrary tag for the pvar column type. These last three pvars are used to 
subselect processor ranges to reduce the number of processors involved in an 
operation. 

Again, edges and units can be added or deleted. Processor memories for deleted 
units are zeroed out. A new structure can be placed in any unused processors. The 
level, column type, current unit id, and attached unit id values must be consistent with 
the desired model interconnectivity. 

The number of CM virtual processors required to represent a given model on the 
CM differs for each approach. Given N units and N(N-1) non-zero interconnects (e.g. 
a symmetric model), the edge list approach simply distributes N(N-1) edges to N(N-1) 
CM virtual processors. The composite approach requires two virtual processors for 
each interconnect and one virtual processor for each unit or N +2 N (N -1) CM virtual 
processors total. The difference between the number of processors required by the two 
approaches is N2. Table I shows the processor and CM virtualization requirements for 
each approach over a range of model sizes. 

TABLE I Model Sizes and CM Processors Required 

Run No. Grid Size Number of Units Edge List Quart CM Virt. Procs. Virt. LeveL 
N(N-1) 

1 82 64 4032 8192 0 
2 92 81 6480 8192 0 
3 112 121 14520 16384 0 
4 132 169 28392 32768 2 
5 162 256 65280 65536 4 
6 192 361 129960 131072 8 

Run No. Grid Size Number of Units Composite Quart CM Virt. Procs. Virt. LeveL 
N+2N(N-1) 

7 82 64 8128 8192 0 
8 92 81 13041 16384 0 
9 112 121 29161 32768 2 

10 132 169 56953 65536 4 
11 162 256 130816 131072 8 
12 192 361 260281 262144 16 
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CONTROL STRUCTURES 

The control code for neural network simulations (in *Lisp or C*) is stored and 
executed sequentially on a host computer (e.g. Symbolics 36xx and V AX 86xx) 
connected to the CM by a high speed communication line. Neural network simulations 
executed in *Lisp use a small subset of the total instruction set: processor selection 
reset (*all), processor selection (*when), parallel content assignment (*set), global 
summation (*sum), parallel multiplication (*!! ), parallel summation (+! I), parallel 
exponentiation (exp! I), the parallel global memory references (*pset) and (pref! I), and 
the parallel segmented scans (copy!! and +!!). Selecting CM processors puts them in a 
"list of active processors" (loap) where their contents may be arithmetically manipulated 
in parallel. Copies of the list of active processors may be made and used at any time. A 
subset of the processors in the loap may be "subselected" at any time, reducing the loap 
contents. The processor selection reset clears the current selected set by setting all 
processors as selected. Parallel content assignment allows pvars in the currently 
selected processor set to be assinged allowed values in one step. Global summation 
executes a tree reduction sum across the CM processors by grid or cube address for 
particular pvars. Parallel multiplications and additions multiply and add pvars for all 
selected CM processors in one step. The parallel exponential applies the function, eX, to 
the contents of a specified pvar, x, over all selected processors. Parallel segmented 
scans apply two functions, copy!! and +!!, to subsets ofCM processors by scanning 
across grid or cube addresses. Scanning may be forward or backward (Le. by 
ascending or descending cube address order, respectively). 

Figs. 3 and 4 show the edge list approach kernels required for Hebbian learning for 
a R2 -> R2 model. The loop construct in Fig. 3 drives the activation update 

(1) 

operation. The usual loop to compute each weighted sum for a particular unit has been 
replaced by four parallel operations: a selection reset (*all), a subselection of all the 
processors for which the particular unit is a receiver of activation (*when (=!! rid (!! 
(1+ u»», a parallel multiplication (*!! weight sact), and a tree reduction sum (*sum 
... ). Activation is spread for a particular unit, to all others it is connected to, by: 
storing the newly computed activation in an array on the host, then subselecting the 
processors where the particular unit is a sender of activation (*when (=!! sid (!! (1 + 
u»», and broadcasting the array value on the host to those processors. 

(dotimes (u 4) 
(*all (*when (=!! rid (!! (1+ u») 

(setf (aref activation u) 
(some-nonlinearity (*sum (*!! weight sact»» 

(*set ract (!! (aref activation u») 
(*all (*when (=!! sid (!! (1+ u») 

(*set sact (!! (aref activation u»»» 

Fig. 3. Activation Update Kernel for the Edge Lst Approach. 

Fig. 4 shows the Hebbian weight update kernel 
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(2) 

(*all 
(*set weight 

(*!! learn-rate ract sact»» 

Fig. 4. Hebbian Weight Modification Kernel for the Edge List Approach 

The edge list activation update kernel is essentially serial because the steps involved can 
only be applied to one unit at a time. The weight modification is parallel. For error 
back propagation a seperate loop for computing the errors for the units on each layer of 
a model is required. Activation update and error back propagation also require transfers 
to and from arrays on the host on every iteration step incurring a concomitant overhead. 

Other common computations used for neural networks can be computed in parallel 
using the edge list approach. Fig. 5 shows the code kernel for parallel computation of 
Lyapunov engergy equations 

(3) 

where i= 1 to number of units (N). 

(+ (* -.5 (*sum (*!! weight ract sact») (*sum (*!! input sact») 

Fig. 5. Kernel for Computation of the Lyapunov Energy Equation 

Although an input pvar, input, is defined for all edges, it is only non-zero for those 
edges associated with input units. Fig. 6 shows the pvar structure for parallel 
computation of a Hopfield weight prescription, with segmented scanning to produce the 
weights in one step, 

W· · -l:S I(2ar·-I)(2ar·-I) IJ - r= 1 J (4) 

where wii=O, Wij=Wjh and r=I to the number of patterns, S, to be stored. 

seg t n n t n n 
ract vII V21 ... VSI vII V2I ... VSI .. . 
sact V I2 v22' .. VS2 v13 v23 ... VS3 .. . 
weight wI2 w13 

Fig. 6. Pvar Structure for Parallel Computation QfHopfield Weight Prescription 

Fig. 7 shows the *Lisp kernel used on the pvar structure in Fig. 6. 

(set weight 
(scan '+!! (*!! (-!! (*!! ract (!! 2» (!! 1» (-!! (*!! sact (!! 2» (!! 1»» 

:segment-pvar seg :inc1ude-self t) 

Fig. 7. Parallel Computation of Hopfield Weight Prescription 
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The inefficiencies of the edge list activation update are solved by the updating 
method used in the composite approach. Fig. 8 shows the *Lisp kernel for activation 
update using the composite approach. Fig. 9 shows the *Lisp kernel for the Hebbian 
learning operation in the composite approach. 

(*a1l 
(*when (=!! level (!! 1» 

(*set act (scan!! act-I 'copy!! :segment-pvar forwardb :include-self t» 
(*set act (*!! act-l weight» 
(*when (=!! type (!! 2» (*pset :overwrite act-l act-I ftransfer») 

(*when (=!! level (!! 2» 

(*all 

(*set act (scan!! act-l '+!! :segment-pvar forwarda :include-self t» 
(*when (=!! type (!! 1» (some-nonlinearity!! act-I»» 

Fig. 8. Activation Update Kernel for the Composite Approach 

(*set act-l (scan!! act-I 'copy!! :segment-pvar forwardb 
:include-self t» 

(*when (=!! type (!! 2» 
(*set act-2 (pref!! act-I btransfer») 
(*set weight 

(+!! weight 
(*!! learn-rate act-l act-2»») 

Fig. 9. Hebbian Weight Update Kernel for the Composite Approach 

It is immediately obvious that no looping is invloved. Any number of interconnects 
may be updated by the proper subselection. However, the more subselection is used 
the less efficient the computation becomes because less processors are invloved. 

COMPLEXITY ANALYSIS 

The performance results presented in the next section can be largely anticipated 
from an analysis of the space and time requirements of the CM implementation 
approaches. For simplicity I use a Rn -> Rn model with Hebbian adaptation. The 
oder of magnitude requirements for activation and weight updating are compared for 
both CM implementation approaches and a basic serial matrix arithmetic approach. 

F~r the given model the space requirements on a conventional serial machine are 
2n+n locations or O(n2). The growth of the space requirement is dominated by the 
nxn weight matrix. defining the system interconnect structure. The edge list appro~ch 
uses six pvars for each processor and uses nxn processors for the mapping, or 6n 
locations or O(n2). The composite approach uses 11 pvars. There are 2n processors 
for units and 2n2 proces~ors for interconnects in the given model. The composite 
approach uses 11(2n+2n ) locations or O(n2). The CM implementations take up 
roughly the same space as the serial implementation, but the space for the serial 
implementation is composed of passive memory whereas the space for the CM 
implementations is composed of interconnected processors with memory . 

The time analysis for the approaches compares the time order of magnitudes to 
compute the activation update (1) and the Hebbian weight update (2). On a serial 
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machine, the n weighted sums computed for the ac~vation update require n2 
multiplicationsffd n(n-l) additions. There are 2n -n operations or time order of 
magnitude O(n ~ The time order of magnitude for the weight matrix update is O(n2) 
since there are n weight matrix elements. 

The edge list approach forms n weighted sums by performing a parallel product of 
all of the weights and activations in the model, (*!! weight sact), and then a tree 
reduction sum, (*sum ... ), of the products for the n uni~ (see Fig. 4). There are 
1 +n(nlog2n) operations or time order of magnitude O(n ). This is the same order of 
magnitude as obtained on a serial machine. Further, the performance of the activation 
update is a function of the number of interconnects to be processed. 

The composite approach forms n weighted sums in nine steps (see Fig. 8): five 
.selection operations; the segmented copy scan before the parallel multiplication; the 
parallel multiplication; the parallel transfer of the products; and the segmented plus 
scan, which forms the n sums in one step. This gives the composite activation update a 
time order of magnitude O( 1). Performance is independent of the number of 
interconnects processed. The next section shows that this is not quite true. 

The n2 weights in the model can be updated in three parallel steps using the edge 
list approach (see Fig. 4). The n2 weights in the model can be updated in eight parallel 
steps using the composite approach (see Fig. 9). In either case, the weight update 
operation has a time order of magnitude 0(1). 

The time complexity results obtained for the composite approach apply to 
computation of the Lyaponov energy equation (3) and the Hopfield weighting 
prescription (4), given that pvar structures which can be scanned (see Figs. 1 and 6) are 
used. The same operations performed serially are time order of magnitude 0(n2). 

The above operations all incur a one time overhead cost for generating the addresses 
in the pointer pvars, used for parallel transfers, and arranging the values in segments 
for scanning. What the above analysis shows is that time complexity is traded for 
space complexity. The goal of CM programming is to use as many processors as 
possible at every step. 

PERFORMANCE COMPARISON 

Simulations of a Hopfield spin-glass model2 were run for six different model sizes 
over the same number (16,384) of physical CM processors to provide a performance 
comparison between implementation approaches. The Hopfield network was chosen 
for the performance comparison because of its simple and well known convergence 
dynamics and because it uses a small set of pvars which allows a wide range of 
network sizes (degrees of virtualization) to be run. Twelve treaments are run. Six with 
the edge list approach and six with the composite approach. Table 3-1 shows the 
model sizes run for each treatment. Each treatment was run at the virtualization level 
just necessary to accomodate the number of processors required for each simulation. 

Two exemplar patterns are stored. Five test patterns are matched against the two 
exemplars. Two test patterns have their centers removed, two have a row and column 
removed, and one is a random pattern. Each exemplar was hand picked and tested to 
insure that it did not produce cross-talk. The number of rows and columns in the 
exemplars and patterns increase as the size of the networks for the treatments increases. 
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Since the performance of the CM is at issue, rather than the performance of the network 
model used, a simple model and a simple pattern set were chosen to minimize 
consideration of the influence of model dynamics on performance. 

Performance is presented by plotting execution speed versus model size. Size is 
measured by the number of interconnects in a model. The execution speed metric is 
interconnects updated per second, N*(N-l )/t, where N is the number of units in a 
model and t is the time used to update the activations for all of the units in a model. All 
of the units were updated three times for each pattern. Convergence was determined 
by the output activation remaining stable over the fmal two updates. The value of t for 
a treatment is the average of 15 samples of t. Fig. 10 shows the activation update cycle 
time for both approaches. Fig. 11 shows the interconnect update speed plots for both 
approaches. The edge list approach is plotted in black. The composite approach is 
plotted in white. The performance shown excludes overhead for interpretation of the 
*Lisp instructions. The model size categories for each plot correspond to the model 
sizes and levels of eM virtualization shown in Table I. 
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Fig. 10. Activation Update Cycle Times 
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Fig. 11. Edge List Interconnect Update Speeds 

Fig. 11 shows an order of magnitude performance difference between the 
approaches and a roll off in performance for each approach as a function of the number 
of virtual processors supported by each physical processor. The performance tum 
around is at 4x virtualization for the edge list approach and 2x virtualization for the 
composite approach. 
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CONCLUSIONS 

Representing the interconnect structure of neural network models with mappings 
defined over the set of fine grain processors provided by the CM architecture provides 
good performance for a modest programming effort utilizing only a small subset of the 
instructions provided by *Lisp. Further, the perfonnance will continue to scale up 
linearly as long as not more than 2x virtualization is required. While the complexity 
analysis of the composite activation update suggests that its performance should be 
independent of the number of interconnects to be processed, the perfonnance results 
show that the performance is indirectly dependent on the number of interconnects to be 
processed because the level of virtualization required (after the physical processors are 
exhausted) is dependent on the number of interconnects to be processed and 
virtualization decreases performance linearly. The complexity analysis of the edge list 
activation update shows that its perfonnance should be roughly the same as serial 
implementations on comparable machines. The results suggest that the composite 
approach is to be prefered over the edge list approach but not be used at a virtualization 
level higher than 2x. 

The mechanism of the composite activation update suggest that hierarchical 
networks simulated in this fashion will compare in perfonnance to single layer 
networks because the parallel transfers provide a type of pipeline for activation for 
synchronously updated hierarchical networks while providing simultaneous activation 
transfers for asynchronously updated single layer networks. Researchers at Thinking 
Machines Corporation and the M.I.T. AI Laboratory in Cambridge Mass. use a similar 
approach for an implementation of NETtalk. Their approach overlaps the weights of 
connected units and simultaneously pipelines activation forward and error backward.3 

Perfonnance better than that presented can be gained by translation of the control 
code from interpreted *Lisp to PARIS and use of the CM2. In addition to not being 
interpreted, PARIS allows explicit control over important registers that aren't 
accessable through *Lisp. The CM2 will offer a number of new features which will 
enhance perfonnance of neural network simulations: a *Lisp compiler, larger 
processor memory (64K), and floating point processors. The complier and floating 
point processors will increase execution speeds while the larger processor memories 
will provide a larger number of virtual processors at the performance tum around points 
allowing higher perfonnance through higher CM utilization. 
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