652

Scaling Properties of Coarse-Coded Symbol Memories

Ronald Rosenfeld
David S. Touretzky

Computer Science Department
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract: Coarse-coded symbol memories have appeared in several neural network
symbol processing models. In order to determine how these models would scale, one
must first have some understanding of the mathematics of coarse-coded representa-
tions. We define the general structure of coarse-coded symbol memories and derive
mathematical relationships among their essential parameters: memory size, symbol-set
size and capacity. The computed capacity of one of the schemes agrees well with actual
measurements of the coarse-coded working memory of DCPS, Touretzky and Hinton’s
distributed connectionist production system.

1 Introduction

A distributed representation is a memory scheme in which each entity (concept, symbol)
is represented by a pattern of activity over many units [3]. If each unit participates
in the representation of many entities, it is said to be coarsely tuned, and the memory
itself is called a coarse-coded memory.

Coarse-coded memories have been used for storing symbols in several neural network
symbol processing models, such as Touretzky and Hinton’s distributed connectionist
production system DCPS (8,9], Touretzky’s distributed implementation of linked list
structures on a Boltzmann machine, BoltzCONS (10], and St. John and McClelland’s
PDP model of case role defaults [6]. In all of these models, memory capacity was mea-
sured empirically and parameters were adjusted by trial and error to obtain the desired
behavior. We are now able to give a mathematical foundation to these experiments by
analyzing the relationships among the fundamental memory parameters.

There are several paradigms for coarse-coded memories. In a feature-based repre-
sentation, each unit stands for some semantic feature. Binary units can code features
with binary values, whereas more complicated units or groups of units are required to
code more complicated features, such as multi-valued properties or numerical values
from a continuous scale. The units that form the representation of a concept define
an intersection of features that constitutes that concept. Similarity between concepts
composed of binary features can be measured by the Hamming distance between their
representations. In a neural network implementation, relationships between concepts
are implemented via connections among the units forming their representations. Certain
types of generalization phenomena thereby emerge automatically.

A different paradigm is used when representing points in a multidimensional contin-
uous space [2,3]. Each unit encodes values in some subset of the space. Typically the

© American Institute of Physics 1988

653

subsets are hypercubes or hyperspheres, but they may be more coarsely tuned along
some dimensions than others [1]. The point to be represented is in the subspace formed
by the intersection of all active units. As more units are turned on, the accuracy of the
representation improves. The density and degree of overlap of the units’ receptive fields
determines the system’s resolution [7].

Yet another paradigm for coarse-coded memories, and the one we will deal with
exclusively, does not involve features. Each concept, or symbol, is represented by an
arbitrary subset of the units, called its pattern. Unlike in feature-based representations,
the units in the pattern bear no relationship to the meaning of the symbol represented. A
symbol is stored in memory by turning on all the units in its pattern. A symbol is deemed
present if all the units in its pattern are active.! The receptive field of each unit is defined
as the set of all symbols in whose pattern it participates. We call such memories coarse-
coded symbol memories (CCSMs). We use the term “symbol” instead of “concept” to
emphasize that the internal structure of the entity to be represented is not involved in
its representation. In CCSMs, a short Hamming distance between two symbols does
not imply semantic similarity, and is in general an undesirable phenomenon.

The efficiency with which CCSMs handle sparse memories is the major reason they
have been used in many connectionist systems, and hence the major reason for studying
them here. The unit-sharing strategy that gives rise to efficient encoding in CCSMs
is also the source of their major weakness. Symbols share units with other symbols.
As more symbols are stored, more and more of the units are turned on. At some
point, some symbol may be deemed present in memory because all of its units are
turned on, even though it was not explicitly stored: a “ghost” is born. Ghosts are
an unwanted phenomenon arising out of the overlap among the representations of the
various symbols. The emergence of ghosts marks the limits of the system’s capacity:
the number of symbols it can store simultaneously and reliably.

2 Definitions and Fundamental Parameters

A coarse coded symbol memory in its most general form consists of:

e A set of N binary state units.

e An alphabet of a symbols to be represented. Symbols in this context are atomic
entities: they have no constituent structure.

e A memory scheme, which is a function that maps each symbol to a subset of
the units — its pattern. The receptive field of a unit is defined as the set of
all symbols to whose pattern it belongs (see Figure 1). The exact nature of the

1This criterion can be generalized by introducing a vistbility threshold: a fraction of
the pattern that should be on in order for a symbol to be considered present. Our analy-
sis deals only with a visibility criterion of 100%, but can be generalized to accommodate
noise.

654

[[S:[S:]Ss]S]Ss[Ss[5[58]

Uy ° ™ @ °

p o | o o | o

Us ® e | o »
Ug || o e | o

Us d ° e
Ug || o | @ e | o)

Figure 1: A memory scheme (N = 6, a = 8) defined in terms of units U; and symbols
S;. The columns are the symbols’ patterns. The rows are the units’ receptive fields.

memory scheme mapping determines the properties of the memory, and is the
central target of our investigation.

As symbols are stored, the memory fills up and ghosts eventually appear. It is not
possible to detect a ghost simply by inspecting the contents of memory, since there is
no general way of distinguishing a symbol that was stored from one that emerged out of
overlaps with other symbols. (It is sometimes possible, however, to conclude that there
are no ghosts.) Furthermore, a symbol that emerged as a ghost at one time may not be
a ghost at a later time if it was subsequently stored into memory. Thus the definition
of a ghost depends not only on the state of the memory but also on its history.

Some memory schemes guarantee that no ghost will emerge as long as the number of
symbols stored does not exceed some specified limit. In other schemes, the emergence
of ghosts is an ever-present possibility, but its probability can be kept arbitrarily low
by adjusting other parameters. We analyze systems of both types. First, two more bits
of notation need to be introduced:

Pghost’ Probability of a ghost. The probability that at least one ghost will appear
after some number of symbols have been stored.

k: Capacity. The maximum number of symbols that can be stored simultaneously
before the probability of a ghost exceeds a specified threshold. If the threshold is
0, we say that the capacity is guaranteed.

A localist representation, where every symbol is represented by a single unit and
every unit is dedicated to the representation of a single symbol, can now be viewed as
a special case of coarse-coded memory, where k = N = a and Pghost = 0. Localist
representations are well suited for memories that are not sparse. In these cases, coarse-
coded memories are at a disadvantage. In designing coarse-coded symbol memories we
are interested in cases where k < N < a. The permissible probability for a ghost in
these systems should be low enough so that its impact can be ignored.

655

3 Analysis of Four Memory Schemes
3.1 Bounded Overlap (guaranteed capacity)

If we want to construct the memory scheme with the largest possible a (given N and
k) while guaranteeing Pghost = 0, the problem can be stated formally as:

Given a set of size N, find the largest collection of subsets of it such that no
union of k such subsets subsumes any other subset in the collection.

This is a well known problem in Coding Theory, in slight disguise. Unfortunately,
no complete analytical solution is known. We therefore simplify our task and consider
only systems in which all symbols are represented by the same number of units (i.e. all
patterns are of the same size). In mathematical terms, we restrict ourselves to constant
weight codes. The problem then becomes:

Given a set of size N, find the largest collection of subsets of size ezactly
L such that no union of k such subsets subsumes any other subset in the
collection.

There are no known complete analytical solutions for the size of the largest collection
of patterns even when the patterns are of a fixed size. Nor is any efficient procedure
for constructing such a collection known. We therefore simplify the problem further.
We now restrict our consideration to patterns whose pairwise overlap is bounded by a
given number. For a given pattern size L and desired capacity k, we require that no
two patterns overlap in more than m units, where:

L-1
m=| ——— 1
—| (1)

Memory schemes that obey this constraint are guaranteed a capacity of at least k
symbols, since any k symbols taken together can overlap at most L — 1 units in the

pattern of any other symbol — one unit short of making it a ghost. Based on this
constraint, our mathematical problem now becomes:

Given a set of size N, find the largest collection of subsets of size exactly L
such that the intersection of any two such subsets is of size < m (where m
is given by equation 1.)

Coding theory has yet to produce a complete solution to this problem, but several
methods of deriving upper bounds have been proposed (see for example [4]). The simple
formula we use here is a variant of the Johnson Bound. Let aj;, denote the maximum
number of symbols attainable in memory schemes that use bounded overlap. Then

N
< o) @)
m+1

abo(N, L,m)

656

The Johnson bound is known to be an ezact solution asymptotically (that is, when
N,L,m — oo and their ratios remain finite).

Since we are free to choose the pattern size, we optimize our memory scheme by
maximizing the above expression over all possible values of L. For the parameter sub-
space we are interested in here (N < 1000, k < 50) we use numerical approximation to
obtain:

ap(N,k) = max ("""1 < _max (—N—)m+l< (0207 (3)
b T Lef, N (] 1) Le(,NJ\L - m

(Recall that m is a function of L and k.) Thus the upper bound we derived depicts a
simple exponential relationship between o and N/k. Next, we try to construct memory
schemes of this type. A Common Lisp program using a modified depth-first search
constructed memory schemes for various parameter values, whose a’s came within 80%
to 90% of the upper bound. These results are far from conclusive, however, since only
a small portion of the parameter space was tested.

In evaluating the viability of this approach, its apparent optimality should be con-
trasted with two major weaknesses. First, this type of memory scheme is hard to
construct computationally. It took our program several minutes of CPU time on a
Symbolics 3600 to produce reasonable solutions for cases like N = 200,k = 5,m =1,
with an exponential increase in computing time for larger values of m. Second, if CC-
SMs are used as models of memory in naturally evolving systems (such as the bram)
this approach places too great a burden on developmental mechanisms.

The importance of the bounded overlap approach lies mainly in its role as an upper
bound for all possible memory schemes, subject to the simplifications made earlier. All
schemes with guaranteed capacities can be measured relative to equation 3.

3.2 Random Fixed Size Patterns (a stochastic approach)

Randomly produced memory schemes are easy to implement and are attractive because
of their naturalness. However, if the patterns of two symbols coincide, the guaranteed
capacity will be zero (storing one of these symbols will render the other a ghost). We
therefore abandon the goal of guaranteeing a certain capacity, and instead establish a
tolerance level for ghosts, P, ghost- For large enough memories, where stochastic behavior
is more robust, we may expect reasonable capacity even with very small Pghost'

In the first stochastic approach we analyze, patterns are randomly selected subsets
of a fixed size L. Unlike in the previous approach, choosing k does not bound a. We
may define as many symbols as we wish, although at the cost of increased probability
of a ghost (or, alternatively, decreased capacity). The probability of a ghost appearing
after k symbols have been stored is given by Equation 4:

min(N,kL] (C) a—k
Bhost(N L,k t'.!) = 1= Z TN:L(k!c) & (N)] (4)
e=L

657

Tn,L(k,c) is the probability that exactly ¢ units will be active after k symbols have
been stored. It is defined recursively by Equation 5:

TN'L(O, 0) =1
Tn,L(k,c) =0 for eitherk=0and ¢c# 0,ork>0andc< L (5)
Twp(k,¢)= Tho T(k—1,c—a)- (V) (520/(})

We have constructed various coarse-coded memories with random fixed-size receptive
fields and measured their capacities. The experimental results show good agreement
with the above equation.

The optimal pattern size for fixed values of N, k, and o can be determined by
binary search on Equation 4, since Pghost(L) has exactly one maximum in the interval
(1, N]. However, this may be expensive for large N. A computational shortcut can be
achieved by estimating the optimal L and searching in a small interval around it. A
good initial estimate is derived by replacing the summation in Equation 4 with a single
term involving E|c]: the expected value of the number of active units after k symbols
have been stored. The latter can be expressed as:

El] = N-[1-(1-L/N)]

The estimated L is the one that maximizes the following expression:

()/()

An alternative formula, developed by Joseph Tebelskis, produces very good approx-
imations to Eq. 4 and is much more efficient to compute. After storing k symbols in
memory, the probability P, that a single arbitrary symbol z has become a ghost is given
by:

L Nk k
P,(N,L,k,a) = g(_l)j (f) (N;J) /(}g) (6)

If we now assume that each symbol’s P, is independent of that of any other symbol,
we obtain:

P

ghost & 1-(1- P=)a_k (7)

This assumption of independence is not strictly true, but the relative error was less
than 0.1% for the parameter ranges we considered, when Pghost was no greater than
0.01.

We have constructed the two-dimensional table T, 1 (k, c) for a wide range of (N, L)
values (70 < N < 1000, 7 < L < 43), and produced graphs of the relationships between
N, k, @, and Pghost for optimum pattern sizes, as determined by Equation 4. The

658

results show an approximately exponential relationship between a and N/k [5]. Thus,
for a fixed number of symbols, the capacity is proportional to the number of units. Let
arsp denote the maximum number of symbols attainable in memory schemes that use
random fixed-size patterns. Some typical relationships, derived from the data, are:

@ryp(Pghost = 0-01) » o.oosfs.eﬂ'—*f*&’:"-M
arsp(Pghost = 0-001) = 0.0008 - >475%

(8)

3.3 Random Receptors (a stochastic approach)

A second stochastic approach is to have each unit assigned to each symbol with an
independent fixed probability s. This method lends itself to easy mathematical analysis,
resulting in a closed-form analytical solution.

After storing k symbols, the probability that a given unit is active is 1 — (1 — 8)*
(independent of any other unit). For a given symbol to be a ghost, every unit must
either be active or else not belong to that symbol’s pattern. That will happen with a

N
probability [1 —8-(1- s)*] , and thus the probability of a ghost is:

Pghost(N,k,s) = 1- [1 - [1 -8-(1- a)"‘]Nr‘:_i= (9)

Assuming Pghogt < 1 and k < o (both hold in our case), the expression can be
simplified to:

Pghost(a;N,k,S) = - [1_3-(1_ s)k]N

from which a can be extracted:

Pghost
TEPRTESTL

o, (N, k,s, Pghost) (10)

We can now optimize by finding the value of 8 that maximizes «, given any desired
upper bound on the expected value of Pehost This is done straightforwardly by solving
da/ds = 0. Note that s - N corresponds to L in the previous approach. The solution is
8 = 1/(k + 1), which yields, after some algebraic manipulation:

Oy = Pghost . eNlog[(k+1}"‘+"/((k+l)"""—k")] (11)

A comparison of the results using the two stochastic approaches reveals an interesting
similarity. For large k, with Pghost = 0.01 the term 0.468/k of Equation 8 can be seen
as a numerical approximation to the log term in Equation 11, and the multiplicative
factor of 0.0086 in Equation 8 approximates Pghost in Equation 11. This is hardly
surprising, since the Law of Large Numbers implies that in the limit (N,k — oo, with
s fixed) the two methods are equivalent.

659

Finally, it should be.noted that the stochastic approaches we analyzed generate
a family of memory schemes, with non-identical ghost-probabilities. Pghost. in our
formulas is therefore better understood as an ezpected value, averaged over the entire
family.

3.4 Partitioned Binary Coding (a reference point)

The last memory scheme we analyze is not strictly distributed. Rather, it is somewhere
in between a distributed and a localist representation, and is presented for comparison
with the previous results. For a given number of units N and desired capacity k, the
units are partitioned into k equal-size “slots,” each consisting of N/k units (for simplicity
we assume that k divides N). Each slot is capable of storing exactly one symbol.

The most efficient representation for all possible symbols that may be stored into
a slot is to assign them binary codes, using the N/k units of each slot as bits. This
would allow 2¥/* symbols to be represented. Using binary coding, however, will not
give us the required capacity of 1 symbol, since binary patterns subsume one another.
For example, storing the code ‘10110’ into one of the slots will cause the codes ‘10010’,
10100’ and ‘00010’ (as well as several other codes) to become ghosts.

A possible solution is to use only half of the bits in each slot for a binary code, and
set the other half to the binary complement of that code (we assume that N/k is even).
This way, the codes are guaranteed not to subsume one another. Let ayp;. denote the
number of symbols representable using a partitioned binary coding scheme. Then,

appe = oN/2k _ ,0.347% (12)

Once again, a is exponential in N/k. The form of the result closely resembles the
estimated upper bound on the Bounded Overlap method given in Equation 3. There is
also a strong resemblance to Equations 8 and 11, except that the fractional multiplier in
front of the exponential, corresponding to P}, ¢, 18 missing. P, .. is O for the Parti-
tioned Binary Coding method, but this is enforced by dividing the memory into disjoint
sets of units rather than adjusting the patterns to reduce overlap among symbols.

As mentioned previously, this memory scheme is not really distributed in the sense
used in this paper, since there is no one pattern associated with a symbol. Instead, a
symbol is represented by any one of a set of k patterns, each N/k bits long, corresponding
to its appearance in one of the k slots. To check whether a symbol is present, all k slots
must be examined. To store a new symbol in memory, one must scan the k slots until an
empty one is found. Equation 12 should therefore be used only as a point of reference.

4 Measurement of DCPS

The three distributed schemes we have studied all use unstructured patterns, the only
constraint being that patterns are at least roughly the same size. Imposing more com-
plex structure on any of these schemes may is likely to reduce the capacity somewhat. In

660

Memory Scheme Result
Bounded Overlap ayo(N, k) < £0-367¢
Random Fixed-size Patterns a,f,(Pshost = 0.01) = 0.0086 - 468 %

“ &y fp(Pyhost = 0-001) & 0.0008 - OATSE
Niog (EF 1)1/ ((k D)1= %)

Random Receptors arr = Pohogt * ©
— (0347%

Partitioned Binary Coding Qpe

Table 1 Summary of results for various memory schemes.

order to quantify this effect, we measured the memory capacity of DCPS (BoltzCONS
uses the same memory scheme) and compared the results with the theoretical models
analyzed above.

DCPS’ memory scheme is a modified version of the Random Receptors method [5].
The symbol space is the set of all triples over a 25 letter alphabet. Units have fixed-size
receptive fields organized as 6 x 6 X 6 subspaces. Patterns are manipulated to minimize
the variance in pattern size across symbols. The parameters for DCPS are: N = 2000,
a = 25% = 15625, and the mean pattern size is (6/25)° x 2000 = 27.65 with a standard
deviation of 1.5. When Pghost. = 0.01 the measured capacity was k = 48 symbols. By
substituting for N in Equation 11 we find that the highest k value for which a,, > 15625
is 51. There does not appear to be a significant cost for maintaining structure in the
receptive fields.

5 Summary and Discussion

Table 1 summarizes the results obtained for the four methods analyzed. Some dif-
ferences must be emphasized:

e ay, and apy. deal with guaranteed capacity, whereas a,sp and a,, are meaningful
only for Pghost > 0.

e a3, is only an upper bound.
® a,sp is based on numerical estimates.

® ayp. is based on a scheme which is not strictly coarse-coded.

The similar functional form of all the results, although not surprising, is aesthetically
pleasing. Some of the functional dependencies among the various parameters can be
derived informally using qualitative arguments. Only a rigorous analysis, however, can
provide the definite answers that are needed for a better understanding of these systems
and their scaling properties.

661

Acknowledgments

We thank Geoffrey Hinton, Noga Alon and Victor Wei for helpful comments, and Joseph
Tebelskis for sharing with us his formula for approximating Pghost in the case of fixed
pattern sizes.

This work was supported by National Science Foundation grants IST-8516330 and
EET-8716324, and by the Office of Naval Research under contract number N0OO0O14-86-
K-0678. The first author was supported by a National Science Foundation graduate
fellowship.

References

[1] Ballard, D H. (1986) Cortical connections and parallel processing: structure and
function. Behavioral and Brain Sciences 9(1).

[2] Feldman, J. A., and Ballard, D. H. (1982) Connectionist models and their proper-
ties. Cognitive Science 6, pp. 205-254.

[3] Hinton, G. E., McClelland, J. L., and Rumelhart, D. E. (1986) Distributed repre-
sentations. In D. E. Rumelhart and J. L. McClelland (eds.), Parallel Distributed

Processing: Ezplorations in the Microstructure of Cognition, volume 1. Cambridge,
MA: MIT Press.

[4] Macwilliams, F.J., and Sloane, N.J.A. (1978). The Theory of Error-Correcting
Codes, North-Holland.

[5] Rosenfeld, R. and Touretzky, D. S. (1987) Four capacity models for coarse-coded
symbol memories. Technical report CMU-CS-87-182, Carnegie Mellon University
Computer Science Department, Pittsburgh, PA.

[6] St. John, M. F. and McClelland, J. L. (1986) Reconstructive memory for sentences:
a PDP approach. Proceedings of the Ohio University Inference Conference.

[7] Sullins, J. (1985) Value cell encoding strategies. Technical report TR-165, Com-
puter Science Department, University of Rochester, Rochester, NY.

[8] Touretzky, D. S., and Hinton, G. E. (1985) Symbols among the neurons: details of
a connectionist inference architecture. Proceedings of IJCAI-85, Los Angeles, CA,
pp. 238-243.

[9] Touretzky, D. S., and Hinton, G. E. (1986) A distributed connectionist produc-
tion system. Technical report CMU-CS-86-172, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA.

[10] Touretzky, D. S. (1986) BoltzCONS: reconciling connectionism with the recursive
nature of stacks and trees. Proceedings of the Eighth Annual Conference of the
Cognitive Science Society, Amherst, MA, pp. 522-530.

