
22

Abstract

LEARNING ON A GENERAL NETWORK

Amir F. Atiya
Department of Electrical Engineering

California Institute of Technology
Ca 91125

This paper generalizes the backpropagation method to a general network containing feed­
back t;onnections. The network model considered consists of interconnected groups of neurons,
where each group could be fully interconnected (it could have feedback connections, with pos­
sibly asymmetric weights), but no loops between the groups are allowed. A stochastic descent
algorithm is applied, under a certain inequality constraint on each intra-group weight matrix
which ensures for the network to possess a unique equilibrium state for every input.

Introduction

It has been shown in the last few years that large networks of interconnected "neuron" -like
elemp.nts are quite suitable for performing a variety of computational and pattern recognition
tasks. One of the well-known neural network models is the backpropagation model [1]-[4]. It
is an elegant way for teaching a layered feedforward network by a set of given input/output
examples. Neural network models having feedback connections, on the other hand, have also
been devised (for example the Hopfield network [5]), and are shown to be quite successful in
performing some computational tasks. It is important, though, to have a method for learning
by examples for a feedback network, since this is a general way of design, and thus one can
avoid using an ad hoc design method for each different computational task. The existence
of feedback is expected to improve the computational abilities of a given network. This is
because in feedback networks the state iterates until a stable state is reached. Thus processing
is perforrr:.ed on several steps or recursions. This, in general allows more processing abilities
than the "single step" feedforward case (note also the fact that a feedforward network is
a special case of a feedback network). Therefore, in this work we consider the problem of
developing a general learning algorithm for feedback networks.

In developing a learning algorithm for feedback networks, one has to pay attention to the
following (see Fig. 1 for an example of a configuration of a feedback network). The state of
the network evolves in time until it goes to equilibrium, or possibly other types of behavior
such as periodic or chaotic motion could occur. However, we are interested in having a steady
and and fixed output for every input applied to the network. Therefore, we have the following
two important requirements for the network. Beginning in any initial condition, the state
should ultimately go to equilibrium. The other requirement is that we have to have a unique

© American Institute of Physics 1988

23

equilibrium state. It is in fact that equilibrium state that determines the final output. The
objective of the learning algorithm is to adjust the parameters (weights) of the network in small
steps, so as to move the unique equilibrium state in a way that will result finally in an output
as close as possible to the required one (for each given input). The existence of more than op.e
equilibrium state for a given input causes the following problems. In some iterations one might
be updating the weights so as to move one of the equilibrium states in a sought direction, while
in other iterations (especially with different input examples) a different equilibrium state is
moved. Another important point is that when implementing the network (after the completion
oflearning), for a fixed input there can be more than one possible output. Independently, other
work appeared recently on training a feedback network [6],[7],[8]. Learning algorithms were
developed, but solving the problem of ensuring a unique equilibrium was not considered. This
problem is addressed in this paper and an appropriate network and a learning algorithm are
proposed.

neuron 1

inputs outputs

Fig . 1
A recurrent network

The Feedback Network

Consider a group of n neurons which could be fully inter-connected (see Fig. 1 for an
example). The weight matrix W can be asymmetric (as opposed to the Hopfield network).
The inputs are also weighted before entering into the network (let V be the weight matrix).
Let x and y be the input and output vectors respectively. In our model y is governed by the
following set of differential equations, proposed by Hopfield [5]:

du
Tdj = Wf(u) - u + Vx, y = f(u) (1)

24

where f(u) = (J(ud, ... , f(un)f, T denotes the transpose operator, f is a bounded and
differentiable function, and.,. is a positive constant.

For a given input, we would like the network after a short transient period to give a steady
and fixed output, no matter what the initial network state was. This means that beginning
any initial condition, the state is to be attracted towards a unique equilibrium. This leads to
looking for a condition on the matrix W.

Theorem: A network (not necessarily symmetric) satisfying

L L w'fi < l/max(J')2,
i i

exhibits no other behavior except going to a unique equilibrium for a given input.

Proof : Let udt) and U2(t) be two solutions of (1). Let

where " II is the two-norm. Differentiating J with respect to time, one obtains

Using (1) , the expression becomes

dJ(t) 2 2 2 T [() ()] -d- = --lluI(t) - u2(t))11 + -(uI(t) - U2(t)) W f uI(t) - f uz(t) .
t 1" .,.

Using Schwarz's Inequality, we obtain

Again, by Schwarz's Inequality,

i = 1, ... ,n

where Wi denotes the ith row of W. Using the mean value theorem, we get

Ilf(udt)) - f(U2(t))II ~ (maxl!'I)IIUl(t) - uz(t)ll. (3)

Using (2),(3), and the expression for J(t), we get

d~~t) ~ -aJ(t) (4)

where

(2)

25

By hypothesis of the Theorem, a is strictly positive. Multiplying both sides of (4) by exp(at),
the inequality

results, from which we obtain
J(t) ~ J(O)e- at .

From that and from the fact that J is non-negative, it follows that J(t) goes to zero as t -+ <Xl.

Therefore, any two solutions corresponding to any two initial conditions ultimately approach
each other. To show that this asymptotic solution is in fact an equilibrium, one simply takes
U2(t) = Ul(t + T), where T is a constant, and applies the above argument (that J(t) -+ 0 as
t -+ <Xl), and hence Ul(t + T) -+ udt) as t -+ <Xl for any T, and this completes the proof.

For example, if the function I is of the following widely used sigmoid-shaped form,

1
I(u) = l+e- u '

then the sum of the square of the weights should be less than 16. Note that for any function
I, scaling does not have an effect on the overall results. We have to work in our updating
scheme subject to the constraint given in the Theorem. In many cases where a large network
is necessary, this constraint might be too restrictive. Therefore we propose a general network,
which is explained in the next Section.

The General Network

We propose the following network (for an example refer to Fig. 2). The neurons are
partitioned into several groups. Within each group there are no restrictions on the connections
and therefore the group could be fully interconnected (i.e. it could have feedback connections) .
The groups are connected to each other, but in a way that there are no loops. The inputs to
the whole network can be connected to the inputs of any of the groups (each input can have
several connections to several groups). The outputs of the whole network are taken to be the
outputs (or part of the outputs) of a certain group, say group I. The constraint given in the
Theorem is applied on each intra-group weight matrix separately. Let (qa, s"), a = 1, .. . , N be
the input/output vector pairs of the function to be implemented. We would like to minimize
the sum of the square error, given by

a=l

where
M

e" = I)y{ - si}2,
i=l

and yf is the output vector of group f upon giving input qa, and M is the dimension of vector
s". The learning process is performed by feeding the input examples qU sequentially to the
network, each time updating the weights in an attempt to minimize the error.

26

inputs

Fig. 2
An example of a general network

(each group represents a recurrent network)

J---V outputs

Now, consider a single group l. Let Wi be the intra-group weight matrix of group l, vrl
be the matrix of weights between the outputs of group,. and the inputs of group l, and yl be
the output vector of group I. Let the respective elements be w~i' V[~., and y~. Furthermore,
let n, be the number of neurons of group l. Assume that the time constant l' is sufficiently
small so as to allow the network to settle quickly to the equilibrium state, which is given by
the solution of the equation

yl = f(W'yl + L vrlyr) . (5)
r£A I

where A, is the set of the indices of the groups whose outputs a.re connected to the inputs of
group ,. We would like each iteration to update the weight matrices Wi and vrl so as to move
the equilibrium in a direction to decrease the error. We need therefore to know the change in
the error produced by a small change in the weight matrices. Let .:;';, , and aa~~, denote the

matrices whose (i, j)th element are :~'.' and ::~ respectively. Let ~ be the column vector
'1 '1 :r

whose ith element is ~. We obtain the following relations:
uy.

8ea = [A' _ (W')T] -1 8ea (')T
8W' 8yl Y ,

8ea = [A' _ (W')T] -1 8ea (r)T
8Vtl 8yl y ,

where A' is the diagonal matrix whose ith diagonal element is l/f'(Lk w!kY~ + LrLktJ[kyk)
for a derivation refer to Appendix). The vector ~ associated with groUp l can be obtained

in terms of the vectors ~, fEB" where B, is the set of the indices of the groups whose inputs
are connected to the outputs of group ,. We get (refer to Appendix)

8ea = '" (V'i)T[Ai _ (Wi{r 1 8e".. (6)
8yl ~ 8y3

JlBI

The matrix A' ~ (W')T for any group l can never be singular, so we will not face any
problem in the updating process. To prove that, let z be a vector satisfying

[A' - (W'f]z = o.

We can write

zdmaxlf' I ~ LW~.Zk'
k

i = I, ... , nl

where Zi is the ,"th element of z. Using Schwarz's Inequality, we obtain

i = I, ... ,nl

Squaring both sides and adding the inequalities for i = I, ... , nl, we get

L/; ~ max(J')2(Lz~) LL(w~i)2. (7)
k i k

Since the condition
LL(W!k)2 < I/max(J')2),

k

27

is enforced, it follows that (7) cannot be satisfied unless z is the zero vector. Thus, the matrix
A' - (W')T cannot be singular.

For each iteration we begin by updating the weights of group f (the group contammg

the final outputs). For that group ~ equals simply 2(y{ - SI, ... , yf.t - SM, 0, ... , O)T). Then
we move backwards to the groups connected to that group and obtain their corresponding
!!J: vectors using (6), update the weights, and proceed in the same manner until we complete
updating all the groups. Updating the weights is performed using the following stochastic
descent algorithm for each group,

8ea
t:. V = -a3 8V + a4 ea R ,

where R is a noise matrix whose elements are characterized by independent zero-mean unity­
variance Gaussian densities, and the a's are parameters. The purpose of adding noise is to
allow escaping local minima if one gets stuck in any of them. Note that the control parameter
is taken to be ea. Hence the variance of the added noise tends to decrease the more we
approach the ideal zero-error solution. This makes sense because for a large error, i.e. for an
unsatisfactory solution, it pays more to add noise to the weight matrices in order to escape
local minima. On the other hand, if the error is small, then we are possibly near the global
minimum or to an acceptable solution, and hence we do not want too much noise in order
not to be thrown out of that basin. Note that once we reach the ideal zero-error solution the
added noise as well as the gradient of ea become zero for all a and hence the increments of the
weight matrices become zero. If after a certain iteration W happens to violate the constraint
Liiwlj ~ constant < I/max(J')2, then its elements are scaled so as to project it back onto
the surface of the hypershere.

Implementation Example

A pattern recognition example is considered. Fig. 3 shows a set of two-dimensional
training patterns from three classes. It is required to design a neural network recognizer with

28

three output neurons. Each of the neurons should be on if a sample of the corresponding class is
presented, and off otherwise, i.e. we would like to design a "winner-take-all" network. A single­
layer three neuron feedback network is implemented. We obtained 3.3% error. Performing the
same experiment on a feedforward single-layer network with three neurons, we obtained 20%
error. For satisfactory results, a feedforward network should be two-layer. With one neuron
in the first layer and three in the second layer, we got 36.7% error. Finally, with two neurons
in the first layer and three in the second layer, we got a match with the feedback case, with
3.3% error .

z
z z

z z
z z z

z z
z

z z z z
zil z

1

33 3
1

3
3

3 33 3 3
3 ~ 3

3

3

3 3

3

3

Fig. 3
A pattern recognition example

Conclusion

A way to extend the backpropagation method to feedback networks has been proposed .
A condition on the weight matrix is obtained, to insure having only one fixed point, so as
to prevent having more than one possible output for a fixed input. A general structure for
networks is presented, in which the network consists of a number of feedback groups connected
to each other in a feedforward manner. A stochastic descent rule is used to update the weights.
The lJ!ethod is applied to a pattern recognition example. With a single-layer feedback network
it obtained good results. On the other hand, the feedforward backpropagation method achieved
good resuls only for the case of more than one layer, hence also with a larger number of neurons
than the feedback case.

29

Acknow ledgement

The author would like to gratefully acknowledge Dr . Y. Abu-Mostafa for the useful
discussions. This work is supported by Air Force Office of Scientific Research under Grant
AFOSR-86-0296.

Appendix

Differentiating (5), one obtains

a I a I
Yj '(')(,,", I Ym '6) -a I = f Zj L..,Wjm-a I +Yp jk ,

w kp m wkp
k,p = 1, ... ,n,

where
if j = k
otherwise,

and

We can write

a~' = (A' _ Wi) -lbkz>

awkp
(A - 1)

where b kp is the nt-dimensional vector whose ith component is given by

By the chain rule,

b~l> = {y~
• 0

ifi = k
otherwise.

aea _ ""' aea ay;
-a I -L..,-a I-a I'

wkp j Yj w kp

which, upon substituting from (A - 1), can be put in the form y!,gk~' where gk is the kth

column of (A' - Wt)-l. Finally, we obtain the required expression, which is

ae" = [At _ (WI)T] -1 ae" (,)T aw' ayl y .

Regarding a()~~I' it is obtained by differentiating (5) with respect to vr~,. We get similarly

where C kl' is the nt-dimensional vector whose ith component is given by

if i = k
otherwise.

30

A derivation very similar to the case of :~l results in the following required expression:

Bea = [A' _ (w,)T] -1 Bea (r)T.
BVrl By' y

8 8 j 8 y J
Now, finally consider ~. Let ~, jf.B, be the matrix whose (k,p)th element is ~. The

elements of ~ can be obtained by differentiating the equation for the fixed point for group
. uy

J, as follows,

Hence,

:~~. = (Ai - Wi) -IV'i. (A - 2)

Using the chain rule, one can write

·T
Bea = ~(ByJ) Bea

By' ~ Byl By;'
JEEr

We substitute from (A - 2) into the previous equation to complete the derivation by obtaining

References

111 P. Werbos, "Beyond regression: New tools for prediction and analysis in behavioral sci­
ences", Harvard University dissertation, 1974.

[21 D. Parker, "Learning logic", MIT Tech Report TR-47, Center for Computational Research
in Economics and Management Science, 1985.

[31 Y. Le Cun, "A learning scheme for asymmetric threshold network", Proceedings of Cog­
nitiva, Paris, June 1985.

[41 D. Rumelhart, G.Hinton, and R. Williams, "Learning internal representations by error
propagation", in D. Rumelhart, J. McLelland and the PDP research group (Eds.), Parallel
distributed processing: Explorations in the microstructure of cognition, Vol. 1, MIT Press,
Cambridge, MA, 1986.

151 J. Hopfield, "Neurons with graded response have collective computational properties like
those of two-state neurons", Proc. N atl. Acad. Sci. USA, May 1984.

[61 L. Ahneida, " A learning rule for asynchronous perceptrons with feedback in a combinato­
rial environment", Proc. of the First Int. Annual Conf. on Neural Networks, San Diego,
June 1987.

[71 R. Rohwer, and B. Forrest, "Training time-dependence in neural networks", Proc. of the
First Int. Annual Conf. on Neural Networks, San Diego, June 1987.

[81 F. Pineda, "Generalization of back-propagation to recurrent neural networks", Phys. Rev.
Lett., vol. 59, no. 19, 9 Nov. 1987.

