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1 Introduction 
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There are three existing connection::;t models in which network states are assigned 
a computational energy. These models-Hopfield nets, Hopfield and Tank nets, and 
Boltzmann Machines-search for states with minimal energy. Every link in the net­
work can be thought of as imposing a constraint on acceptable states, and each vio­
lation adds to the total energy. This is convenient for the designer because constraint 
satisfaction problems can be mapped easily onto a network. Multiple constraints can 
be superposed, and those states satisfying the most constraints will have the lowest 
energy. 

Of course there is no free lunch. Constraint satisfaction problems are generally 
combinatorial and remain so even with a parallel implementation. Indeed, Merrick 
Furst (personal communication) has shown that an NP-complete problem, graph col­
oring, can be reduced to deciding whether a connectionist network has a state with 
an energy of zero (or below). Therefore designing a practical network for solving a 
problem requires more than simply putting the energy minima in the right places. The 
topography of the energy space affects the ease with which a network can find good 
solutions. If the problem has highly interacting constraints, there will be many local 
minima separated by energy barriers. There are two principal approaches to search­
ing these spaces: monotonic gradient descent, introduced by Hopfield [1] and refined 
by Hopfield and Tank [2]; and stochastic gradient descent, used by the Boltzmann 
Machine [3]. While the monotonic methods are not guaranteed to find the optimal 
solution, they generally find good solutions much faster than the Boltzmann Machine. 
This paper adds a refinement to the Boltzmann Machine search algorithm analogous 
to the Hopfield and Tank technique, allowing the user to trade off the speed of search 
for the quality of the solution. 
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2 Hopfield nets 

A Hopfield net [1] consists of binary-valued units connected by symmetric weighted 
links. The global energy of the network is defined to be 

1 
E = -2 ~ ~ WijSjSj - ~ljsj 

I Jr' I 

where Sj is the state of unit i, and Wjj is the weight on the link between units i and j. 
The search algorithm is: randomly select a unit and probe it until quiescence. 

During a probe, a unit decides whether to be on or off, detennined by the states of 
its neighbors. When a unit is probed, there are two possible resulting global states. 
The difference in energy between these states is called the unit's energy gap: 

The decision rule is 

s, = { 
o iL1i < 0 
1 otherwise 

This rule chooses the state with lower energy. With time, the global energy of the 
network monotonically decreases. Since there are only a finite number of states, the 
network must eventually reach quiescence. 

3 Boltzmann Machines 

A Boltzmann Machine [3] also has binary units and weighted links, and the same 
energy function is used. Boltzmann Machines also have a learning rule for updating 
weights, but it is not used in this paper. Here the important difference is in the 
decision rule, which is stochastic. As in probing a Hopfield unit, the energy gap is 
detennined. It is used to detennine a probability of adopting the on state: 

1 
P(Sj = 1) = 1 + e-tl;jT 

where T is the computational temperature. With this rule, energy does not decrease 
monotonically. The network is more likely to adopt low energy states, but it some­
times goes uphill. The idea is that it can search a number of minima, but spends 
more time in deeper ones. At low temperatures, the ratio of time spent in the deepest 
minima is so large that the chances of not being in the global minimum are negligible. 
It has been proven [4] that after searching long enough, the probabilities of the states 
are given by the Boltzmann distribution, which is strictly a function of energy and 
temperature, and is independent of topography: 

P ex _ -CEa-E,,)jT - - e .-
P{3 

(1) 
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The approach to equilibrium, where equation 1 holds, is speeded by initially 
searching at a high temperature and gradually decreasing it. Unfortunately, reaching 
equilibrium stills takes exponential time. While the Hopfield net settles quickly and 
is not guaranteed to find the best solution, a Boltzmann Machine can theoretically be 
run long enough to guarantee that the global optimum is found Most of the time the 

_ uphill moves which allow the network to escape local minima are a waste of time, 
however. It is a direct consequence of the guaranteed ability to find the best solution 
that makes finding even approximate solutions slow. 

4 Hopfield and Tank networks 

In Hopfield and Tank nets [2], the units take on continuous values between zero and 
one, so the search takes place in the interior of a hypercube rather than only on its 
vertices. The search algorithm is deterministic gradient descent. By beginning near 
the center of the space and searching in the direction of steepest descent, it seems 
likely that the deepest minimum will be found. There is still no guarantee, but good 
results have been reported for many problems. 

The modified energy equation is 

1 ~~ ~ 1 r; I ~ 
E = -2 ~ ~ WjjSjSj + ~ Rj 10 g- (s)ds - ~ [jSj 

I l' I 

(2) 

Rj is'the input resistance to unit i, and g(u) is the sigmoidal unit transfer function 
1+~2X.. The second term is zero for extreme values of Sj, and is minimized at Sj = t. 

The Hopfield and Tank model is continuous in time as well as value. Instead of 
proceeding by discrete probes, the system is described by simultaneous differential 
equations, one for each unit. Hopfield and Tank show that the following equation of 
m<?tion results in a monotonic decrease in the value of the energy function: 

duo 
_I = -u./r + ~ Woos' + [. dt I ~ IlJ I 

J 

where r = RC, C is a constant determining the speed of convergence, Uj = g-I(Sj), 

and the gain, .A, is analgous to (the inverse of) temperature in a Boltzmann Machine . 
.A determines how important it is to satisfy the constraints imposed by the links to 
other units. When .A is low, these constraints are largely ignored and the second term 
dominates, tending to keep the system near the center of the search space, where 
there is a single global minimum. At high gains, the minima lie at the corners of 
the search space, in the same locations as for the Hopfield model and the Boltzmann 
model. If the system is run at high gain, but the initial state is near the center of the 
space, the search gradually moves out towards the corners, on the way encountering 
"continental divides" between watersheds leading to all the various local minima. The 
initial steepness of the watersheds serves as a heuristic for choosing which minima is 
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likely to be lower. This search heuristic emerges automatically from the architecture, 
making network design simple. For many problems this single automatic heuristic 
results in a system comparable to the best knowledge intensive algorithms in which 
many domain specific heuristics are laboriously hand programmed. 

For many problems, Hopfield and Tank nets seem quite sufficient [5,6]. However 
for one network we have been using [7] the Hopfield and Tank model invariably settles 
into poor local minima. The solution has been to use a new model combining the 
advantages of Boltzmann Machines and Hopfield and Tank networks. 

5 'Ensemble' Boltzmann Machines 

It seems the Hopfield and Tank model gets its advantage by measuring the actual 
gradient, giving the steepest direction to move. This is much more informative than 
picking a random direction and deciding which of the two corners of the space to try, 
as models using binary units must do. Peter Brown (personal communication) has 
investigated continuous Boltzmann Machines, in which units stochastically adopt a 
state between zero and one. The scheme presented here has a similar effect, but the 
units actually take on discrete states between zero and one. Each ensemble unit can 
be thought of as an ensemble of identically connected conventional Boltzmann units. 
To probe the ensemble unit, each of its constituents is probed, and the state of the 
ensemble unit is the average of its constituents' states. Because this average is over 
a number of identical independent binary random variables, the ensemble unit's state 
is binomially distributed. 

Figure 1 shows an ensemble unit with three constituents. At infinite temperature, 
all unit states tend toward -t, and at zero temperature the states go to zero or one 
unless the energy gap is exactly zero. This is similar to the behavior of a Hopfield and 
Tank network at low and high gain, respectively. In Ensemble Boltzmann Machines 
(EBMs) the tendency towards! in the absence of constraints from other units results 
from the shape of the binomial distribution. In contrast, the second term in the energy 
equation is responsible for this effect in the Hopfield and Tank model. 

Although an EBM proceeds in discrete time using probes, over a large number of 
probes the search tends to proceed in the direction of the gradient. Every time a unit 
is probed, a move is made along one axis whose length depends on the magnitude of 
the gradient in that direction. Because probing still contains a degree of stochasticity, 
EBMs can escape from local minima, and if run long enough are guaranteed to find 
the global minimum. By varying n, the number of components of each ensemble 
unit, the system can exhibit any intermediate behavior in the tradeoff between the 
speed of convergence of Hopfield and Tank networks, and the ability to escape local 
minima of Boltzmann Machines. 

Clearly when n = 1 the performance is identical to a conventional Boltzmann 
Machine, because each unit consists of a single Boltzmann unit. As n -+ 00 the 
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s=1/3 s=2/3 

Figure 1: The heavy lines depict an 'Ensemble' Boltzmann Machine with two units. With 
an ensemble size of three, this network behaves like a conventional Boltzmann Machine 
consisting of six units (light lines). The state of the ensemble units is the average of the states 
of its components. 

value a unit takes on after probing becomes deterministic. The stable points of the 
system are then identical to the ones of the Hopfield and Tank model. 

To prove this, it suffices to show that at each probe the ensemble Boltzmann 
unit takes on the state which gives rise to the lowest (Hopfield and Tank) energy. 
Therefore the energy must monotonically decrease. Further, if the system is not at a 
global (Hopfield and Tank) energy minimum, there is some unit which can be probed 
so as to lower the energy. 

To show that the state resulting from a probe is the minimum possible, we show 
first that the derivative of the energy with resepect to the unit's state is zero at the 
resulting state, and second that the second derivative is positive over the entire range 
of possible states, zero to one. 

so 

Taking the derivative of equation 2 gives 

Now 
1 

g(u) = 1 + e-2>'w 

lIs 
g- (u) = -1n--

2,\ 1 - s 

Let T = 2lR' The EBM update rule is 

1 
Sk=---= 

1 + e-ilk/ T 

• 



228 

Therefore 

dEl 
dslc SI; 1 

1+. Lll;/T 

= - Ll + Tin [l+e lLltlT 1 
Ic e-Llt/T 

1+e-at1t 

= -Lllc + Tin eLlI;/T 

= - Lllc + T(LlIc/D 

= 0 

and 

= _1_. 1 - Sic • [(1 - Sic) - (-Sic)] 

2>"R Sic (I - SIc)2 

1 
= 

2>..Rslc(l - Sic) 

> 0 on 0 < Sic < 1 

In writing a program to simulate an EBMt it would be wasteful to explicitly 
represent the components of each ensemble unit. Since each component has an 
identical energy gapt the average of their values is given by the binomial distribution 
b(ntp) where n is the ensemble sizet and p is l+e 1 LlIT. There are numerical methods 
for sampling from this distribution in time independent of n [8]. When n is infinitet 
there is no need to bother with the distribution because the result is just p. 

Hopfield and Tank suggest [2] that the Hopfield and Tank. model is a mean field 
approximation to the original Hopfield model. In a mean field approximationt the 
average value of a variable is used to calculate its effect on other variables t rather 
than calculating all the individual interactions. Consider a large ensemble of Hopfield 
nets with two unitst A and B. To find the distribution of final states exactlYt each B 
unit must be updated based on the A unit in the same network. The calculation must 
be repeated for every network in the ensemble. Using a mean field approximationt 
the average value of all the B units is calculated based on the average value of all 
the A units. This calculation is no harder than that of the state of a single Hopfield 
network, yet is potentially more informative since it approximates an average property 
of a whole ensemble of Hopfield networks. The states of Hopfield and Tank. units 
can be viewed as representing the ensemble average of the states of Hopfield units 
in this way. Peterson and Anderson [9] demonstrate rigorously that the behavior is a 
mean field approximation. 

In the EBM, it is intuitively clear that a mean field approximation is being made. 
The network can be thought of as a real ensemble of Boltzmann networkst except with 
additional connections between the networks so that each Boltzmann unit sees not 
only its neighbors in the same nett but also sees the average state of the neighboring 
units in all the nets (see figure 1). 
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6 Traveling Salesman Problem 

The traveling salesman problem illustrates the use of energy-based connectionist net­
works, and the ease with which they may be designed. Given a list of city locations, 
the task is to find a tour of minimum length through all the cities and returning to 
the starting city. To represent a solution to an n city problem in a network, it is 
convenient to use n columns of n rows of units [2]. If a unit at coordinates (i, J) is 
on, it indicates that the ith city is the jth to be visited. A valid solution will have n 
units on, one in every column and one in every row. The requirements can be divided 
into four constraints: there can be no more than one unit on in a row, no more that 
one unit on in a column, there must be n units on, and the distances between cities 
must be minimized. Hopfield and Tank use the following energy function to effect 
these constraints: 

X i Hi 

B/2 L L L SXiSYi + 
i x Y:IX 

C/2 (;;~>Xi -nr + 

D/2 L L L dxrsXi(sY,i+l + SY,i-l) 
x Y:IX i 

(3) 

Here units are given two subscripts to indicate their row and column, and the sub­
scripts "wrap around" when outside the range 1 < i < n. The first tenn is imple-­
mented with inhibitory links between every pair of units in a row, and is zero only 
if no two are on. The second term is inhibition within columns. In the third term, n 
is the number of cities in the tour. When the system reaches a vertex of the search 
space, this term is zero only if exactly n units are on. This constraint is implemented 
with inhibitory links between all n4 pairs of units plus an excitatory input current to 
all units. In the last term dxr is the distance between cities X and Y. At points in 
the search space representing valid tours, the summation is numerically equal to the 
length of the tour. 

I As long as the constraints ensuring that the solution is a valid tour are stronger 
than those minimizing distance, the global energy minimum will represent the shortest 
tour. However every valid tour will be a local energy minimum. Which tour is chosen 
will depend on the random initial starting state, and on the random probing order. 

7 Empirical Results 

The evidence that convinced me EBMs offer improved performance over Hopfield 
and Tank networks was the ease of tuning them for the Ted Turner problem reported 
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in [7]. However this evidence is entirely subjective; it is impossible to show that 
no set of parameters exist which would make the Hopfield and Tank model perform 
well. Instead we have chosen to repeat the traveling salesman problem experiments 
reported by Hopfield and Tank [2], using the same cities and the same values for the 
constants in equation 3. The tour involves 10 cities, and the shortest tour is of length 
2.72. An average tour has length 4.55. Hopfield and Tank report finding a valid tour 
in 16 of 20 settlings, and that half of these are one of the two shortest tours. 

One advantage of Hopfield and Tank nets over Boltzmann Machines is that they 
move continuously in the direction of the gradient. EBMs move in discrete jumps 
whose size is the value of the gradient along a given axis. When the system is 
far from equilibrium these jumps can be quite large, and the search is inefficient. 
Although Hopfield and Tank nets can do a whole search at high gain, Boltzmann 
Machines usually vary the temperature so the system can remain close to equilibrium 
as the low temperature eqUilibrium is approached. For this reason our model was 
more sensitive to the gain parameter than the Hopfield and Tank model, and we used 
temperatures much higher than 2lR' 

As expected, when n is infinite, an EBM produces results similar to those reported 
by Hopfield and Tank. 85 out of 100 settlings resulted in valid tours, and the average 
length was 2.73. Table 1 shows how n affects the number of valid tours and the 
average tour length. As n decreases from infinity, both the average tour length and 
the number of valid tours increases. (We have no explanation for the anomalously 
low number of valid tours for n = 40.) Both of these effects result from the increased 
sampling noise in determining the ensemble unit states for lower n. With more 
noise, the system has an easier time escaping local minima which do not represent 
valid tours. Yet at the same time the discriminability between the very best tours 
and moderately good tours decreases, because these smaller energy differences are 
swamped by the noise. 

Rather than stop trials when the network was observed to converge, a constant 
number of probes, 200 per unit, was made. However we noted that convergence was 
generally faster for larger values of n. Thus for the traveling salesman problem, large 
n give faster and better solutions, but a smaller values gives the highest reliability. 
Depending on the application, a value of either infinity or 50 seems best. 

8 Conclusion 

'Ensemble' Boltzmann Machines are completely upward compatible with conven­
tional Boltzmann Machines. The above experiment can be taken to show that they 
perform better at the traveling salesman problem. In addition, at the limit of infinite 
ensemble size they perform similarly to Hopfield and Tank nets. For TSP and perhaps 
many other problems, the latter model seems an equally good choice. Perhaps due to 
the extreme regularity of the architecture, the energy space must be nicely behaved 
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Ensemble Size Percent Valid Average Tour Length 

I 93 3.32 
40 84 2.92 
50 95 2.79 
100 89 2.79 
1000 90 2.80 

infinity 85 2.73 

Table 1: Number of valid tours out of 100 trials and average tour length, as a function 
of ensemble size. An ensemble size of one corresponds to a Boltzmann Machine. Infinity 
loosely corresponds to a Hopfield and Tank network. 

in that the ravine steepness near the center of the space is a good indication of its 
eventual depth. In this case the ability to escape local minima is not required for 
good perfonnance. 

For the Ted Turner problem, which has a very irregular architecture and many 
more constraint types, the ability to escape local minima seems essential. Conven­
tional Boltzmann Machines are too noisy, both for efficient search and for debugging. 
EBMs allow the designer the flexibility to add only as much noise as is necessary. In 
addition, lower noise can be used for debugging. Even though this may give poorer 
perfonnance, a more detenninistic search is easier for the debugger to understand, 
allowing the proper fix to be made. 
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