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ABSTRACT

In the synchronous discrete model, the average memory capacity of
bidirectional associative memories (BAMs) is compared with that of
Hopfield memories, by means of a calculation of the percentage of good
recall for 100 random BAMs of dimension 64x64, for different numbers
of stored vectors. The memory capacity is found to be much smaller than
the Kosko upper bound, which is the lesser of the two dimensions of the
BAM. On the average, a 64x64 BAM has about 68 & of the capacity of the
corresponding Hopfield memory with the same number of neurons. Ortho-
normal coding of the BAM increases the effective storage capacity by
only 25 %. The memory capacity limitations are due to spurious stable
states, which arise in BAMs in much the same way as in Hopfield
memories. Occurrence of spurious stable states can be avoided by
replacing the thresholding in the backlayer of the BAM by another
nonlinear process, here called "Dominant Label Selection” (DLS). The
simplest DLS is the winner-take-all net, which gives a fault-sensitive
memory. Fault tolerance can be improved by the use of an orthogonal or
unitary transformation. An optical application of the latter is a Fourier
transform, which is implemented simply by a lens.

INTRODUCTION

A reflexive associative memory, also called bidirectional associa-
tive memory, is a two-layer neural net with bidirectional connections
between the layers. This architecture is implied by Dana Anderson’s
optical resonator‘, and by similar conf iguration52i3. Bart Kosko? coined
the name "Bidirectional Associative Memory" (BAM), and investigated
several basic properties?® we are here concerned with the memory
Capacity of the BAM, with the relation between BAMs and Hopfield
memories’, and with certain variations on the BAM.
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BAM STRUCTURE

We will use the discrete model in which the state of a layer of
neurons is described by a bipolar vector. The Dirac notation® will be
used, in which > and <| denote respectively column and row vectors. <al
and |a> are each other transposes, <alb> is a scalar product, and |a><bl is
an outer product. As depicted in Fig. 1, the BAM has two layers of
neurons, a front layer of N neurons with state vector |f>, and a back layer

backlayer, P neurons — of P neurons with state vector
statevector D stroke  |b>. The bidirectional connec-
I tions between the layers allow
signal flow in two directions.
frontlayer, N neurons forward The front stroke gives [b>=
state vector f stroke s(BIf>), where B is the connec-
Fig. 1. BAM structure tion matrix, and s( ) {s a thres-

hold function, operating at
zero. The back stroke results in an 1pgr‘adet:l front state <f'|=s(<biB),
which also may be written as |r'>=s(B'|b>), where the superscript T
denotes transposition. We consider the synchronous model, where all
neurons of a layer are updated simultaneously, but the front and back
layers are updated at different times. The BAM action is shown in Fig. 2.
The forward stroke entails taking scalar products between a front
state vector [f> and the rows of B, and entering the thresholded resuits
as elements of the back state vector |b>. In the back stroke we take

thresholding v
f & reflection thresholding
- J &
feedback
thresholding A
& reflection NxN .
NxP . v
F1g. 3. Autoassociative
Fig. 2. BAM action memory action

scalar products of |b> with column vectors of B, and enter the
thresholded results as elements of an upgraded state vector [f’>. In
contrast, the action of an autoassociative memory is shown inF Igure 3

The BAM may also be described as an autoassociative memory by
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concatenating the front and back vectors into a single state vector
lv>=|f ,b>,and by taking the (N+P)x(N+P) connection matrix as shown in Fig.
4. This autoassociative memory has the same number of neurons as our
. b BAM, viz. N+P. The BAM operation where

7] | —Thresholding iNitially only the front state is speci-
aere ‘f & feedback  fied may be obtained with the corres-

zero ’ b ponding autoassociative memory by
initially specifying Ib> as zero, and by
Fig. 4. BAM as autoasso- arranging the thresholding operation
ciative memory such that s(0) does not alter the state

vector component. For a Hopfield
memor"y7 the connection matrix is

M
H=( ) Im><ml) -MI (N
m=1

where Im>, m=1 to M, are stored vectors, and I is the identity matrix.

writing the N+P dimensfonal vectors Im> as concatenations ldy,,Cpy>, (1)
takes the form

M
H=( Z(ldm><dml+lcm><cm|+|dm><cml+lcm><dml))—ﬂl, (2
m=1

with proper block placing of submatrices understood. Writing

M
K= lep> <l (3)
M m=1 M
Hg=(> ldpy><dp)-MI, He=( ) lepyp<cph-MI, (4)
m=1 m=1

where the I are identities in appropriate subspaces, the Hopfield matrix
H may be partitioned as shown in Fig. 5. K is just the BAM matrix given
by KoskoS, and previously used by Kohonen? for linear heteroassociative
memories. Comparison of Figs. 4 and 5 shows that in the synchronous
discrete model the BAM with connection matrix (3) is equivalent to a
Hopfield memory in which the diagonal blocks Hy and H. have been
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deleted. Since the Hopfield memory is robust, this "pruning” may not
affect much the associative recall of stored vectors, if M is small;
however, on the average, pruning will not improve the memory capacity.
It follows that, on the average, a discrete synchronous BAM with matrix
(3) can at best have the capacity of a Hopfield memory with the same
number of neurons.

We have performed computations of the average memory capacity
for 64x64 BAMs and for corresponding 128x128 Hopfield memories.
Monte Carlo calculations were done for 100 memories, each of which
stores M random bipolar vectors. The straight recall of all these vectors
was checked, allowing for 24 iterations. For the BAMs, the iterations
were started with a forward stroke in which one of the stored vectors
ldy,> was used as input. The percentage of good recall and its standard

deviation were calculated. The results plotted in Fig. 6 show that the
square BAM has about 68% of the capacity of the corresponding Hopfield
memory. Although the total number of neurons is the same, the BAM only
needs 1/4 of the number of connections of the Hopfield memory. The
storage capacity found 1s much smaller than the Kosko 6 upper bound,

which is min (N,P). 100,
) , 5 o
801 } %% T"%. %‘}‘%H Hadamard-

2
e 1 Y~ ded
o ety 5
" - Igld K 3403 BAM/M ﬂﬂﬂ(}% %ﬂ%
K (Bl o7 Hﬂmﬁﬁ f‘%ﬁmw
1o 20 30 40 50 60
Fig‘ S. Partitioned M, number of stored vectors
Hopfield matrix Fig. 6. % of good recall versus M

CODED BAM

So far, we have considered both front and back states to be used for
data. There is another use of the BAM in which only front states are used
as data, and the back states are seen as providing a code, label, or
pointer for the front state . Such use was anticipated in our expression
(3) for the BAM matrix which stores data vectors |d,,> and their 1abels or

codes Ic,,>. For a square BAM, such an arrangement cuts the Information
contained in a single stored data vector in half. However, the freedom of
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choosing the labels [c,> may perhaps be put to good use. Part of the

problem of spurfous stable states, which plagues BAMs as well as
Hopfield memories as they are loaded up, is due to the lack of
orthogonality of the stored vectors. In the coded BAM we have the
opportunity to remove part of this problem by choosing the labels as
orthonormal. Such labels have been used previously by Kohonen? in linear
heteroassociative memories. The question whether memory capacity can
be improved in this manner was explored by taking 64x64 BAMs in which
the 1abels are chosen as Hadamard vectors. The latter are bipolar vectors
with Euclidean norm +P, which form an orthonormal set. These vectors
are rows of a PxP Hadamard matrix; for a discussion see Harwit and
Sloane !0, The storage capacity of such Hadamard-coded BAMs was
calculated as function of the number M of stored vectors for 100 cases
for each value of M, in the manner discussed before. The percentage of
good recall and its standard deviation are shown in Fig. 6. It is seen that
the Hadamard coding gives about a factor 2.5 in M, compared to the
ordinary 64x64 BAM. However, the coded BAM has only half the stored
data vector dimension. Accounting for this factor 2 reduction of data
vector dimension, the effective storage capacity advantage obtained by
Hadamard coding comes to only 25 %.

HALF BAM WITH HADAMARD CODING

For the coded BAM there is the option of deleting the threshold
operation in the front layer. The resuiting architecture may be called
“half BAM". In the half BAM, thresholding is only done on the labels, and
consequently, the data may be taken as analog vectors. Although such an
arrangement diminishes the robustness of the memory somewhat, there
are applications of interest. We have calculated the percentage of good
recall for 100 cases, and found that giving up the data thresholding cuts
the storage capacity of the Hadamard-coded BAM by about 60 %.

SELECTIVE REFLEXIVE MEMORY

The memory capacity limitations shown in Fig. 6 are due to the
occurence of spurious states when the memories are loaded up.

Consider a discrete BAM with stored data vectors Im>, m=1 to M,
orthonormal labels |cm>, and the connection matrix
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M
K=Z|cm> <l . (5)
m=1

For an input data vector |v> which is closest to the stored data vector
[1>, one has in the forward stroke

M
Ib>=s(clc >+ Z alC) (6)
m=2

where

c=<llv>, and apm=miv> . (7)

M
Although for m#1 aq<c, for some vector component the sumZ amlcm>
m=2

may accumulate to such a large value as to affect the thresholded resuit
[b>. The problem would be avoided if the thresholding operation s( ) in the
back layer of the BAM were to be replaced by another nonlinear operation
which selects, from the linear combination

M
cle >+ Z amiCm> (8)
m=2

the dominant label |cy>. The hypothetical device which performs this

operation is here called the "Dominant Label Selector” (OLS)! ', and we
call the resulting memory architecture "Selective Reflexive Memory”
(SRM). With the back state selected as the dominant label Ic]>, the back

stroke gives <f'l=s(<c,IK)=s(P<1])=<1l, by the orthogonality of the labels
ey It follows'! that the SRM gives perfect associative recall of the

nearest stored data vector, for any number of vectors stored. Of course,
the linear independence of the P-dimensional label vectors Ic.,>, m=1 to

M, requires P>=M.
The DLS must select, from a linear combination of orthonormal
labels, the dominant label. A trivial case is obtained by choosing the
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labels Icm> as basis vectors lum>, which have all components zero except

for the mth component, which is unity. With this choice of labels, the
f DLS may be taken as a winner-
take-all net W, as shown inFig. 7.

® b Taaerl  This case appears to be included in
net Adaptive Resonance Theory
(ART)'2 as 2 special simplified
Fig.7. Simplest reflexive case. A relationship between
memory with DLS the ordinary BAM and ART was

pointed out by Kosko®. As in ART,
there is considerable fault sensitivity in this memory, because the
stored data vectors appear in the connection matrix as rows.

A memory with better fault tolerance may be obtained by using
orthogonal labels other than basis vectors. The DLS can then be taken as
an orthogonal transformation G followed by a winner-take-all net, as
shown in Fig. 8. G is to be chosen such that it transforms the labels Icy,>

f " ] into vectors proportional to the
e basis vectors luy>. This can always
< G |™3°" e done by taking
[ T /w i l:merl-l p
E t =
ur—— n:}ne a G=Z|Up)<cp| . (9)
Fig. 8. Selective reflexive p=1
memory where the Icp>, p=1to P, form a

complete orthonormal set which
contains the labels Ic,>, m=1 to M. The neurons in the DLS serve as

grandmother cells. Once a single winning cell has been activated, i.e.,
the state of the layer is a single basis vector, say |u}>, this vector

must be passed back, after application of the transformation G~ l, such
as to produce the label |c|> at the back of the BAM. Since G is

orthogonal, we have G~ ] =GT, so that the required inverse
transformation may be accomplished simply by sending the basis vector
back through the transformer; this gives

P

<uI|G=Z<u1 lup><cpl=<cyl . (10)
p=1
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as required.

HALF SRM

The SRM may be modified by deleting the thresholding operation in
the front layer. The front neurons then have a linear output, which is
reflected back through the SRM, as shown in Fig. 9. In this case, the

stored data vectors and the

f /linear neurons input data vectors may be taken
,orthogonal as analog vectors, but we re-
1 transfor-— quire all the stored vectors to
KI‘ Gﬁ . have the same norm. The action
S takoely  of the SRM proceeds in the same
ULC—J qpet way as described above, except
that we now require the ortho-
Fig. 9. Half SRM with linear normal labels to have unit
neurons in front layer norm. It follows that, just like

the full SRM, the half SRM gives
perfect associative recall to the nearest stored vector, for any number
of stored vectors up to the dimension P of the labels. The latter
condition is due to the fact that a P-dimensional vector space can at
most contain P orthonormal vectors.

In the SRM the output transform G is introduced in order to improve
the fault tolerance of the connection matrix K. This is accomplished at
the cost of some fault sensitivity of G, the extent of which needs to be
investigated. In this regard it is noted that in certain optical implemen-
tations of reflexive memories, such as Dana Anderson's resonator! and
similar conffgurationszJ, the transformation G is a Fourier transform,
which is implemented simply as a lens. Such an implementation is quite
insentive to the common semiconductor damage mechanisms.

EQUIVALENT AUTOASSOCIATIVE MEMORIES

Concatenation of the front and back state vectors allows descrip-
tion of the SRMs in terms of autoassociative memories. For the SRM
which uses basis vectors as labels the corresponding autoassociative
memory is shown in Fig. 10. This connection matrix structure was also
proposed by Guest et. al.!3. The winner-take-all net W needs to be
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given time to settle on a basis

slow thres.  vector state before the state |b>

L hotding & can influence the front state |f>.
TCEduast This may perhaps be achieved by
arranging the W network to have a

fast thres-

K |'W |bl~ holding & thresholding and feedback which
feedback are fast compared with that of the
K network. An alternate method
Fig. 10. Equivalent auto- may be to equip the W network
associative memory with an output gate which is

opened only after the W net has
settled. These arrangements
present a complication and cause a delay, which in some applications
may be inappropriate, and in others may be acceptable in a trade
between speed and memory density.
For the SRM with output transformer and orthonormal labels other
f b ow feadback than basis vectprs, a correspon-
/> ding autoassociative memory may

be composed as shown in Fig.11.
T f holded
01K|0 "ﬁ"es oo An output gate in the w layer is
K|O|G'| |P tinear chosen as the device which
0 |G|W| |w thresholded prevents the backstroke through
+ outpul gate

the BAM to take place before the
Fig. 11. Autoassociative memory winner-take-al net has settled.
equivalent to SRM with transform The same effect may perhaps be
achieved by choosing different
response times for the neuron

- output gate layers f and w. These matters
Wﬁ w Winner-take-all require investigation. Unless
KL G5 gzzzu:aw - the output transform G is already
TR b finear ' required for other reasons, as in

f front layer some optical resonators, the DLS
X - BAM connections with output transform is clumsy.

G =orthogonal transformation

: It would far better to combine
W- winner-take-all net

the transformer G and the net W
into a single network. To find
Fig. 12. Structure of SRM such a DLS should be considered
a challenge.
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