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ABSTRACT 

In the synchronous discrete model, the average memory capacity of 
bidirectional associative memories (BAMs) is compared with that of 
Hopfield memories, by means of a calculat10n of the percentage of good 
recall for 100 random BAMs of dimension 64x64, for different numbers 
of stored vectors. The memory capac1ty Is found to be much smal1er than 
the Kosko upper bound, which Is the lesser of the two dimensions of the 
BAM. On the average, a 64x64 BAM has about 68 % of the capacity of the 
corresponding Hopfield memory with the same number of neurons. Ortho­
normal coding of the BAM Increases the effective storage capaCity by 
only 25 %. The memory capacity limitations are due to spurious stable 
states, which arise In BAMs In much the same way as in Hopfleld 
memories. Occurrence of spurious stable states can be avoided by 
replacing the thresholding in the backlayer of the BAM by another 
nonl1near process, here called "Dominant Label Selection" (DLS). The 
simplest DLS is the wlnner-take-all net, which gives a fault-sensitive 
memory. Fault tolerance can be improved by the use of an orthogonal or 
unitary transformation. An optical application of the latter is a Fourier 
transform, which is implemented simply by a lens. 

I NTRODUCT ION 

A reflexive associative memory, also called bidirectional associa­
tive memory, is a two-layer neural net with bidirectional connections 
between the layers. This architecture is implied by Dana Anderson's 
optical resonator 1, and by similar configurations2,3. Bart KoSk04 coined 
the name "Bidirectional Associative Memory" (BAM), and Investigated 
several basic propertles4- 6. We are here concerned with the memory 
capac1ty of the BAM, with the relation between BAMs and Hopfleld 
memories7, and with certain variations on the BAM. 
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BAM STRUCTURE 

We will use the discrete model In which the state of a layer of 
neurons Is described by a bipolar vector. The Dirac notationS will be 
used, In which I> and <I denote respectively column and row vectors. <al 
and la> are each other transposes, <alb> Is a scalar product, and la><bl is 
an outer product. As depicted in Fig. 1, the BAM has two layers of 
neurons, a front layer of N neurons w tth state vector If>, and a back layer 

back layer. P neurons back of P neurons with state vector 
state vector b stroke Ib>. The bidirectional connec-

signal flow In two directions. 1 1 tlons between the layers allow 

frOnt1ay~r. 'N ~eurons forward The front stroke gives Ib>= 
state vector f stroke s(Blf», where B 15 the connec-

Fig. 1. BAM structure tlon matrix, and s( ) Is a thres-
hold function, operating at 

zero. The back stroke results 1n an u~graded front state <f'I=s( <biB), 
whIch also may be wr1tten as !r'>=s(B Ib> >. where the superscr1pt T 
denotes transpos1t10n. We consider the synchronous model. where all 
neurons of a layer are updated s1multaneously. but the front and back 
layers are UPdated at d1fferent t1mes. The BAM act10n 1s shown 1n F1g. 2. 
The forward stroke entalls takIng scalar products between a front 
state vector If> and the rows or B, and enter1ng the thresholded results 
as elements of the back state vector Ib>. In the back stroke we take 

threshold ing 
f & reflection 

lID 
NxP 

FIg. 2. BAM act 10n 

threshold ing 
& reflection 

b 

v ~ ~hreShOlding 
4J feedback 

& 
NxN V 

Ftg. 3. Autoassoc1at1ve 
memory act10n 

scalar products of Ib> w1th column vectors of B, and enter the 
thresholded results as elements of an upgraded state vector 1('>. In 
contrast, the act10n of an autoassoc1at1ve memory 1s shown 1n F1gure 3. 

The BAM may also be described as an autoassoc1at1ve memory5 by 
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concatenating the front and back vectors tnto a s1ngle state vector 
Iv>=lf,b>,and by taking the (N+P)x(N+P) connection matrtx as shown in F1g. 
4. This autoassoclat1ve memory has the same number of neurons as our 

f . b'----"" BAM, viz. N+P. The BAM operat1on where 
----!' initially only the front state 1s speci-

zero [IDT 

lID zero 

f thresholding 
& feedback f1ed may be obtained with the corres-

b ponding autoassoc1ative memory by 
initially spectfying Ib> as zero, and by 

Fig. 4. BAM as autoasso- arranging the threshold1ng operat1on 
ctative memory such that s(O) does not alter the state 

vector component. For a Hopfteld 
memory 7 the connection matrix 1s 

M 
H=( I 1m> <mD -MI , 

m=l 
(1) 

where 1m>, m= 1 to M, are stored vectors, and I is the tdentity matr1x. 
Writing the N+P d1mens1onal vectors 1m> as concatenations Idm,cm>, (1) 

takes the form 

M 
H-( I (ldm><dml+lcm><cml+ldm><cml+lcm><dmD)-MI , (2) 

m=l 

w1th proper block plactng of submatr1ces understood. Writing 

M 
K= Llcm><dml , (3) 

M m=l M 
Hd=(Lldm><dmD-MI, Hc=( L'lcm><cml>-MI, (4) 

m=l m=l 

where the I are identities in appropriate subspaces, the Hopfield matrix 
H may be partitioned as shown in Fig. 5. K is just the BAM matrix given 
by Kosko5, and previously used by Kohonen9 for linear heteroassoclatjve 
memories. Comparison of Figs. 4 and 5 shows that in the synchronous 
discrete model the BAM with connection matrix (3) is equivalent to a 
Hopfield memory in which the diagonal blocks Hd and Hc have been 
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deleted. Since the Hopfleld memory is robust~ this "prun1ng" may not 
affect much the associative recall of stored vectors~ if M is small; 
however~ on the average~ pruning will not improve the memory capaclty. 
It follows that, on the average~ a discrete synchronous BAM with matrix 
(3) can at best have the capacity of a Hopfleld memory with the same 
number of neurons. 

We have performed computations of the average memory capacity 
for 64x64 BAMs and for corresponding 128x 128 Hopfleld memories. 
Monte Carlo calculations were done for 100 memories) each of which 
stores M random bipolar vectors. The straight recall of all these vectors 
was checked) al10wtng for 24 Iterations. For the BAMs) the iterations 
were started with a forward stroke in which one of the stored vectors 
Idm> was used as input. The percentage of good recall and its standard 

deviation were calculated. The results plotted in Fig. 6 show that the 
square BAM has about 68~ of the capacity of the corresponding Hopfleld 
memory. Although the total number of neurons is the same) the BAM only 
needs 1/4 of the number of connections of the Hopfield memory. The 
storage capacity found Is much smaller than the Kosko 6 upper bound) 
which Is min (N)P). 

JR[= 

Fig. 5. Partitioned 
Hopfield matrix 

10 20 30 40 50 60 
M. number of stored vectors 

Fig. 6. ~ of good recall versus M 

CODED BAM 

So far) we have considered both front and back states to be used for 
data. There is another use of the BAM in which only front states are used 
as data) and the back states are seen as providing a code) label, or 
pOinter for the front state. Such use was antiCipated in our expression 
(3) for the BAM matrix which stores data vectors Idm> and their labels or 

codes lem>. For a square BAM. such an arrangement cuts the Information 

contained in a single stored data vector jn half. However, the freedom of 
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choosing the labels fCm> may perhaps be put to good use. Part of the 

problem of spurious stable statesl which plagues BAMs as well as 
Hopf1eld memories as they are loaded up, is due to the lack of 
orthogonality of the stored vectors. In the coded BAM we have the 
opportunity to remove part of this problem by choosing the labels as 
orthonorma1. Such labels have been used previously by Kohonen9 1n linear 
heteroassociative memories. The question whether memory capacity can 
be Improved In this manner was explored by taking 64x64 BAt1s In which 
the labels are chosen as Hadamard vectors. The latter are bipolar vectors 
with Euclidean norm ,.fp, which form an orthonormal set. These vectors 
are rows of a PxP Hadamard matrix; for a discussion see Harwtt and 
Sloane 1 0. The storage capacity of such Hadamard-coded BAMs was 
calculated as function of the number M of stored vectors for 100 cases 
for each value of M, in the manner discussed before. The percentage of 
good recall and its standard deviation are shown 1n Fig. 6. It Is seen that 
the Hadamard coding gives about a factor 2.5 in M, compared to the 
ordinary 64x64 BAM. However, the coded BAM has only half the stored 
data vector dimension. Accounting for this factor 2 reduction of data 
vector dimension, the effective storage capacity advantage obtained by 
Hadamard coding comes to only 25 ~. 

HALF BAt1 WITH HADAMARD CODING 

For the coded BAM there is the option of deleting the threshold 
operation In the front layer. The resulting architecture may be called 
"half BAt1". In the half BAM, thresholding Is only done on the labels, and 
consequently, the data may be taken as analog vectors. Although such an 
arrangement diminishes the robustness of the memory somewhat, there 
are applications of interest. We have calculated the percentage of good 
recall for 1 00 cases, and found that giving up the data thresholding cuts 
the storage capacity of the Hadamard-coded BAt1 by about 60 %. 

SELECTIVE REFLEXIVE MEMORY 

The memory capacity limitations shown in Fig. 6 are due to the 
occurence of spurious states when the memories are loaded up. 

Consider a discrete BAM with stored data vectors 1m>, m= 1 to M, 
orthonormal labels Icm>, and the connection matrix 
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(5) 

For an input data vector Iv> which is closest to the stored data vector 
11 >, one has 1n the forward stroke 

M 
Ib>=s(clc 1 >+ L amlcm» , (6) 

m=2 
where 

c=< llv> • and am=<mlv> (7) 

M 
Although for m# 1 am<c, for some vector component the sum L amlcm> 

m=2 
may accumulate to such a large value as to affect the thresholded result 
Ib>. The problem would be avoided jf the thresholding operation s( ) in the 
back layer of the BAM were to be replaced by another nonl1near operation 
which selects, from the I inear combination 

M 
clc 1 >+ L amlcm> 

m=2 

(8) 

the dominant label Ic 1 >. The hypothetical device which performs this 

operation is here called the "Dominant Label Selector" (DLS) 11, and we 
call the resulting memory architecture "Selective Reflexive Memory" 
(SRM). With the back state selected as the dominant label Ic 1 >, the back 

stroke gives <f'I=s( <c ,IK)=s(P< 1 D=< 11, by the orthogonal ity of the labels 

Icm>. It follows 11 that the SRM g1ves perfect assoc1attve recall of the 

nearest stored data vector, for any number of vectors stored. Of course, 
the llnear independence of the P-dimensionallabel vectors Icm>, m= 1 to 

M, requires P>=M. 
The DLS must select, from a linear combination of orthonormal 

labels, the dominant label. A trivial case is obtained by choosing the 
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labels Icm> as basis vectors Ium>, which have all components zero except 

for the mth component, which 1s unity. With this choice of labels, the 
f DLS may be taken as a winner­

~winner­
b take-all 

net 

Flg.7. Simplest reflexive 
memory with DLS 

take-all net W, as shown in Fig. 7. 
This case appears to be Included in 
Adapt Ive Resonance Theory 
(ART) 12 as a special sjmpllf1ed 
case. A relationship between 
the ordinary BAM and ART was 
pOinted out by KoskoS. As in ART, 

there Is cons1derable fault sensitivity tn this memory, because the 
stored data vectors appear in the connectton matrix as rows. 

A memory with better fault tolerance may be obtained by using 
orthogonal labels other than basis vectors. The DLS can then be taken as 
an orthogonal transformation 6 followed by a winner-take-an net, as 
shown 1n Fig. 8. 6 is to be chosen such that 1t transforms the labels Icm> 

f 
I 

1 
1[ (G 

i 

u l 

tnto vectors proportional to the 
rthogonal 1 
transfor- basts vectors um>. This can always ,.0 

mation 

winner­
/' take-all 

net 

be done by tak1ng 
p 

(9) 

F1g. 8. Select1ve reflex1ve 
memory 

G= [Iup> <cpl , 
p=l 

where the Icp>, p= 1 to P, form a 

complete orthonormal set which 
contains the labels Icm>, m=l to M. The neurons in the DLS serve as 

grandmother cells. Once a single winning cell has been activated, I.e., 
the state of the layer Is a single basis vector, say lu I ) J this vector 

must be passed back, after appllcation of the transformation G- 1, such 
as to produce the label IC1> at the back of the BAM. Since G 1s 

orthogonal. we have 6- 1 =6 T, so that the reQu1red 1nverse 
transformation may be accompl1shed sfmply by sending the bas1s vector 
back through the transformer; this gives 

P 
<u 116=[ <u 1 IUp><cpl=<c 11 

p=l 

(10) 
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as required. 

HAlF SRM 

The SRM may be modified by deleting the thresholding operation in 
the front layer. The front neurons then have a I inear output, which is 
reflected back through the SRM, as shown in Fig. 9. In this case, the 

f I i near neurons 
/ orthogonal 1 

.1 
~ 

U 

(G 
T 
I 

,-
transfor­
mation 

winner­
'/' take-all 

net 

Fig. 9. Half SRM with l1near 
neurons in front layer 

stored data vectors and the 
input data vectors may be taken 
as analog vectors, but we re­
Qu1re all the stored vectors to 
have the same norm. The act i on 
of the SRM proceeds in the same 
way as described above, except 
that we now require the ortho­
normal labels to have unit 
norm. It follows that, just l1ke 
the full SRM, the half SRM gives 

perfect associative recall to the nearest stored vector, for any number 
of stored vectors up to the dimension P of the labels. The latter 
condition 1s due to the fact that a P-dimensional vector space can at 
most conta1n P orthonormal vectors. 

In the SRM the output transform Gis 1ntroduced in order to improve 
the fauJt tolerance of the connection matrix K. This is accomplished at 
the cost of some fault sensitivity of G, the extent of which needs to be 
investigated. In this regard 1t is noted that in certatn optical implemen­
tat ions of reflexive memories, such as Dana Anderson's resonator I and 
Similar conflgurations2,3, the transformation G is a Fourier transform, 
which is implemented simply as a lens. Such an implementation ts quite 
insentive to the common semiconductor damage mechanisms. 

EQUIVALENT AUTOASSOCIATIVE MEMORIES 

Concatenation of the front and back state vectors allows descrip­
tion of the SRMs tn terms of autoassociative memories. For the SRM 
which uses basis vectors as labels the corresponding autoassociative 
memory js shown tn Fjg. 10. This connect jon matrtx structure was also 
proposed by Guest et. a1. 13. The wtnner-take-all net W needs to be 
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given t1me to settle on a basis 
vector state before the state Ib> 
can influence the front state If>. 
This may perhaps be achieved by 

arranging the W network to have a 
thresholding and feedback which 
are fast compared with that of the 
K network. An alternate method 
may be to equip the W network 
w1th an output gate which is 
opened only after the W net has 
sett led. These arrangements 

present a compUcatlon and cause a delay, which in some appllcations 
may be 1nappropriate, and In others may be acceptable in a trade 
between speed and memory density. 

For the SRM wtth output transformer and orthonormal1abels other 

fb, w ~eedback 

(OJ [T 

I[ (OJ 

(Q) (G 

(OJ 

(GT 

WI 

f thresholded 

b linear 

W thresholded 
+ output gate 

Fig. 11. Autoassoc1at1ve memory 
equivalent to SRM with transform 

output gate 

wr ~ winner-take-all .......... Woutput 
:t@ b back layer, 

linear 
'--___ -' f front layer 
II = BAM connections 
@ =orthogonal transformat i on 
W! ~ winner-take-all net 

Fig. 12. Structure of SRM 

than basis vectors, a correspon­
ding autoassoclat1ve memory may 
be composed as shown In Fig.l1. 
An output gate in the w layer is 
chosen as the device which 
prevents the backstroke through 
the BAM to take place before the 
w1nner-take-al net has settled. 
The same effect may perhaps be 
achieved by choosing different 
response times for the neuron 
layers f and w. These matters 
require investigation. Unless 
the output transform G 1s already 
required for other reasons, as in 
some optical resonators, the DLS 
with output transform is clumsy. 
I t would far better to combine 
the transformer G and the net W 
into a single network. To find 
such a DLS should be considered 
a cha 11 enge. 
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